Prometheus SLO Burn 示例项目指南
2024-09-12 14:11:35作者:温艾琴Wonderful
项目概述
Google 的 prometheus-slo-burn-example
是一个开源项目,专门用于演示如何使用 Prometheus 结合 Grafana 和 Go 语言来实现服务等级指标(Service Level Indicators, SLIs)的曝光和监控,进而达成服务级别对象(Service Level Objectives, SLOs)。此项目提供了一个端到端的例子,以便开发者学习如何在云原生环境中有效监控服务的可靠性。
项目目录结构及介绍
.
├── contrib # 可能包含额外的贡献代码或组件
├── docker-compose.yaml # Docker Compose 配置,用于本地快速搭建环境
├── grafana # Grafana 的相关配置与面板
│ └── dashboards # Grafana 的仪表板定义文件
├── prometheus # Prometheus 配置文件夹
│ ├── prometheus.yml # 主配置文件
│ └── slos.rules.yml # SLI和SLO相关的Rules定义
├── terraform # Terraform 文件夹,包含自动部署至GCP的配置
│ ├── main.tf # Terraform 主配置文件
│ └── variables.tf # 变量定义文件
├── CONTRIBUTING.md # 贡献者指南
├── LICENSE # 许可证文件,采用 Apache-2.0
└── README.md # 项目的主要文档,包括快速入门指南
- contrib: 可包含外部贡献的代码或额外工具。
- docker-compose.yaml: 本地测试环境的快捷配置。
- grafana: 存储与 Grafana 相关的配置,帮助创建和管理仪表盘。
- prometheus: 包含Prometheus的配置和规则文件,是监控的核心配置所在。
- terraform: 用于在Google Cloud Platform上自动化部署所需的基础设施配置。
- CONTRIBUTING.md: 如何参与项目贡献的指导文档。
- LICENSE: 项目的授权许可详情。
- README.md: 项目的基本说明和部署指引。
项目的启动文件介绍
Docker Compose (docker-compose.yaml)
虽然项目主要关注Prometheus和Terraform配置,但docker-compose.yaml
文件为开发者提供了一个便捷的方式来本地运行整个监控堆栈。通过启动Docker容器,快速配置本地的Prometheus、Grafana和其他可能的相关服务,无需云平台即可测试监控设置。
项目的配置文件介绍
Prometheus配置 (prometheus.yml
)
尽管直接引用未给出具体的prometheus.yml
内容细节,这个文件通常是Prometheus的主配置,负责定义数据抓取目标、存储设置、警报规则等核心功能。它指示Prometheus去哪个endpoint抓取指标数据,并设定监控指标的保留策略。
SLI与SLO规则配置 (slos.rules.yml
)
此文件定义了一系列关键的Prometheus规则,用于计算不同窗口期内的SLIs(比如错误率),并将这些比率记录下来。进一步,它也设置了SLO警报,当错误预算超过阈值时触发警报,例如:
- record: job:slo_errors_per_request:ratio_rate1h
expr: sum by (job, k8s_service) (rate(task:http_response_error_count[1h])) / sum by (job, k8s_service) (rate(task:http_response_total_count[1h]))
- alert: slo_page
expr: |-
(job:slo_errors_per_request:ratio_rate1h > (14.4*0.05) and job:slo_errors_per_request:ratio_rate5m > (14.4*0.05))
or (job:slo_errors_per_request:ratio_rate6h > (6*0.05) and job:slo_errors_per_request:ratio_rate30m > (6*0.05))
labels:
severity: page
这段配置描述了如何记录HTTP错误率,并设置了一个警报规则,当一小时内错误率超出指定SLO阈值时,触发页级警报。
总结起来,prometheus-slo-burn-example
项目通过细致的配置和示例代码,教育用户如何在实践中实施和监视SLO,是云原生环境下服务可靠性管理的一个宝贵资源。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie033
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
831
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
33
searchall
强大的敏感信息搜索工具
Go
2
0
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.63 K
1.45 K