Prometheus SLO Burn 示例项目指南
2024-09-12 16:58:00作者:温艾琴Wonderful
项目概述
Google 的 prometheus-slo-burn-example 是一个开源项目,专门用于演示如何使用 Prometheus 结合 Grafana 和 Go 语言来实现服务等级指标(Service Level Indicators, SLIs)的曝光和监控,进而达成服务级别对象(Service Level Objectives, SLOs)。此项目提供了一个端到端的例子,以便开发者学习如何在云原生环境中有效监控服务的可靠性。
项目目录结构及介绍
.
├── contrib # 可能包含额外的贡献代码或组件
├── docker-compose.yaml # Docker Compose 配置,用于本地快速搭建环境
├── grafana # Grafana 的相关配置与面板
│ └── dashboards # Grafana 的仪表板定义文件
├── prometheus # Prometheus 配置文件夹
│ ├── prometheus.yml # 主配置文件
│ └── slos.rules.yml # SLI和SLO相关的Rules定义
├── terraform # Terraform 文件夹,包含自动部署至GCP的配置
│ ├── main.tf # Terraform 主配置文件
│ └── variables.tf # 变量定义文件
├── CONTRIBUTING.md # 贡献者指南
├── LICENSE # 许可证文件,采用 Apache-2.0
└── README.md # 项目的主要文档,包括快速入门指南
- contrib: 可包含外部贡献的代码或额外工具。
- docker-compose.yaml: 本地测试环境的快捷配置。
- grafana: 存储与 Grafana 相关的配置,帮助创建和管理仪表盘。
- prometheus: 包含Prometheus的配置和规则文件,是监控的核心配置所在。
- terraform: 用于在Google Cloud Platform上自动化部署所需的基础设施配置。
- CONTRIBUTING.md: 如何参与项目贡献的指导文档。
- LICENSE: 项目的授权许可详情。
- README.md: 项目的基本说明和部署指引。
项目的启动文件介绍
Docker Compose (docker-compose.yaml)
虽然项目主要关注Prometheus和Terraform配置,但docker-compose.yaml文件为开发者提供了一个便捷的方式来本地运行整个监控堆栈。通过启动Docker容器,快速配置本地的Prometheus、Grafana和其他可能的相关服务,无需云平台即可测试监控设置。
项目的配置文件介绍
Prometheus配置 (prometheus.yml)
尽管直接引用未给出具体的prometheus.yml内容细节,这个文件通常是Prometheus的主配置,负责定义数据抓取目标、存储设置、警报规则等核心功能。它指示Prometheus去哪个endpoint抓取指标数据,并设定监控指标的保留策略。
SLI与SLO规则配置 (slos.rules.yml)
此文件定义了一系列关键的Prometheus规则,用于计算不同窗口期内的SLIs(比如错误率),并将这些比率记录下来。进一步,它也设置了SLO警报,当错误预算超过阈值时触发警报,例如:
- record: job:slo_errors_per_request:ratio_rate1h
expr: sum by (job, k8s_service) (rate(task:http_response_error_count[1h])) / sum by (job, k8s_service) (rate(task:http_response_total_count[1h]))
- alert: slo_page
expr: |-
(job:slo_errors_per_request:ratio_rate1h > (14.4*0.05) and job:slo_errors_per_request:ratio_rate5m > (14.4*0.05))
or (job:slo_errors_per_request:ratio_rate6h > (6*0.05) and job:slo_errors_per_request:ratio_rate30m > (6*0.05))
labels:
severity: page
这段配置描述了如何记录HTTP错误率,并设置了一个警报规则,当一小时内错误率超出指定SLO阈值时,触发页级警报。
总结起来,prometheus-slo-burn-example项目通过细致的配置和示例代码,教育用户如何在实践中实施和监视SLO,是云原生环境下服务可靠性管理的一个宝贵资源。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758