Qwen1.5模型微调后GPTQ量化部署的tensor并行问题解析
问题背景
在使用Qwen1.5-14B-Chat模型进行LoRA微调后,再进行GPTQ量化成int4格式时,用户遇到了一个特定的部署问题:当使用vLLM框架进行部署时,如果设置tensor-parallel-size大于1(即尝试多GPU并行推理),会出现"ValueError: The input size is not aligned with the quantized weight shape"的错误。而原始未微调的Qwen1.5-14B-Chat-GPTQ-int4模型则没有这个问题。
技术分析
这个问题源于Qwen1.5-14B模型的中间层维度设计。14B参数规模的模型由于其特殊的中间层维度配置,在GPTQ量化后会导致权重形状对齐问题。具体来说:
-
原始模型处理:官方已经对14B-Chat-GPTQ模型进行了更新,通过补零(padding)的方式解决了权重形状对齐问题,使得可以在多GPU上并行推理。
-
微调后模型:当用户对14B-Chat模型进行LoRA微调后,再进行GPTQ量化时,由于微调后的模型没有经过同样的补零处理,导致在多GPU并行时出现权重形状不匹配的问题。
解决方案
对于遇到此问题的用户,可以考虑以下几种解决方案:
-
单GPU推理:暂时使用tensor-parallel-size=1进行单GPU推理,这是最直接的解决方法。
-
模型补零处理:参考官方对14B-Chat-GPTQ模型的处理方式,对微调后的模型权重进行适当的补零处理,确保在多GPU并行时的形状对齐。
-
等待官方更新:关注Qwen1.5项目的更新,未来可能会提供对微调后模型更好的多GPU支持。
技术建议
对于需要进行大规模模型部署的用户,建议:
-
在微调前仔细评估模型规模与部署需求,14B模型可能需要特殊处理才能实现多GPU并行。
-
考虑使用更小规模的模型(如7B)进行微调,这些模型通常没有此类并行问题。
-
在进行GPTQ量化时,确保使用与部署环境相匹配的量化配置,特别是当计划在多GPU上运行时。
总结
Qwen1.5-14B模型在多GPU并行推理时的特殊要求,特别是在微调后模型上的表现,提醒我们在模型工程化过程中需要考虑部署环节的各种约束。理解模型架构的细节和量化技术的内在限制,对于成功部署大规模语言模型至关重要。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00