Qwen1.5模型微调后GPTQ量化部署的tensor并行问题解析
问题背景
在使用Qwen1.5-14B-Chat模型进行LoRA微调后,再进行GPTQ量化成int4格式时,用户遇到了一个特定的部署问题:当使用vLLM框架进行部署时,如果设置tensor-parallel-size大于1(即尝试多GPU并行推理),会出现"ValueError: The input size is not aligned with the quantized weight shape"的错误。而原始未微调的Qwen1.5-14B-Chat-GPTQ-int4模型则没有这个问题。
技术分析
这个问题源于Qwen1.5-14B模型的中间层维度设计。14B参数规模的模型由于其特殊的中间层维度配置,在GPTQ量化后会导致权重形状对齐问题。具体来说:
-
原始模型处理:官方已经对14B-Chat-GPTQ模型进行了更新,通过补零(padding)的方式解决了权重形状对齐问题,使得可以在多GPU上并行推理。
-
微调后模型:当用户对14B-Chat模型进行LoRA微调后,再进行GPTQ量化时,由于微调后的模型没有经过同样的补零处理,导致在多GPU并行时出现权重形状不匹配的问题。
解决方案
对于遇到此问题的用户,可以考虑以下几种解决方案:
-
单GPU推理:暂时使用tensor-parallel-size=1进行单GPU推理,这是最直接的解决方法。
-
模型补零处理:参考官方对14B-Chat-GPTQ模型的处理方式,对微调后的模型权重进行适当的补零处理,确保在多GPU并行时的形状对齐。
-
等待官方更新:关注Qwen1.5项目的更新,未来可能会提供对微调后模型更好的多GPU支持。
技术建议
对于需要进行大规模模型部署的用户,建议:
-
在微调前仔细评估模型规模与部署需求,14B模型可能需要特殊处理才能实现多GPU并行。
-
考虑使用更小规模的模型(如7B)进行微调,这些模型通常没有此类并行问题。
-
在进行GPTQ量化时,确保使用与部署环境相匹配的量化配置,特别是当计划在多GPU上运行时。
总结
Qwen1.5-14B模型在多GPU并行推理时的特殊要求,特别是在微调后模型上的表现,提醒我们在模型工程化过程中需要考虑部署环节的各种约束。理解模型架构的细节和量化技术的内在限制,对于成功部署大规模语言模型至关重要。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00