Qwen1.5模型微调后GPTQ量化部署的tensor并行问题解析
问题背景
在使用Qwen1.5-14B-Chat模型进行LoRA微调后,再进行GPTQ量化成int4格式时,用户遇到了一个特定的部署问题:当使用vLLM框架进行部署时,如果设置tensor-parallel-size大于1(即尝试多GPU并行推理),会出现"ValueError: The input size is not aligned with the quantized weight shape"的错误。而原始未微调的Qwen1.5-14B-Chat-GPTQ-int4模型则没有这个问题。
技术分析
这个问题源于Qwen1.5-14B模型的中间层维度设计。14B参数规模的模型由于其特殊的中间层维度配置,在GPTQ量化后会导致权重形状对齐问题。具体来说:
-
原始模型处理:官方已经对14B-Chat-GPTQ模型进行了更新,通过补零(padding)的方式解决了权重形状对齐问题,使得可以在多GPU上并行推理。
-
微调后模型:当用户对14B-Chat模型进行LoRA微调后,再进行GPTQ量化时,由于微调后的模型没有经过同样的补零处理,导致在多GPU并行时出现权重形状不匹配的问题。
解决方案
对于遇到此问题的用户,可以考虑以下几种解决方案:
-
单GPU推理:暂时使用tensor-parallel-size=1进行单GPU推理,这是最直接的解决方法。
-
模型补零处理:参考官方对14B-Chat-GPTQ模型的处理方式,对微调后的模型权重进行适当的补零处理,确保在多GPU并行时的形状对齐。
-
等待官方更新:关注Qwen1.5项目的更新,未来可能会提供对微调后模型更好的多GPU支持。
技术建议
对于需要进行大规模模型部署的用户,建议:
-
在微调前仔细评估模型规模与部署需求,14B模型可能需要特殊处理才能实现多GPU并行。
-
考虑使用更小规模的模型(如7B)进行微调,这些模型通常没有此类并行问题。
-
在进行GPTQ量化时,确保使用与部署环境相匹配的量化配置,特别是当计划在多GPU上运行时。
总结
Qwen1.5-14B模型在多GPU并行推理时的特殊要求,特别是在微调后模型上的表现,提醒我们在模型工程化过程中需要考虑部署环节的各种约束。理解模型架构的细节和量化技术的内在限制,对于成功部署大规模语言模型至关重要。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0100Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile02
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









