Qwen3模型量化部署中的感叹号问题分析与解决方案
2025-05-12 04:55:14作者:曹令琨Iris
问题现象描述
在使用Qwen1.5-32B模型进行微调后,通过AutoAWQ量化并使用vLLM部署时,部分用户反馈模型会生成连续的感叹号序列。这种现象在之前的issue中也有提及,特别是在int4量化版本中较为常见,但理论上AWQ量化方式应该能避免此类问题。
问题根源分析
根据技术讨论和实际测试,该问题主要与以下几个技术因素相关:
-
数值稳定性问题:当出现
RuntimeError: probability tensor contains either inf, nan or element < 0
错误时,模型会生成连续的感叹号。这通常源于fp16精度下的数值不稳定性,这种精度在GPTQ和AWQ等量化技术的高效内核中经常使用。 -
vLLM版本兼容性:有用户报告称,在vLLM 0.4.x版本中,即使是未量化的Qwen1.5-32B-Chat模型也会出现此问题,而在vLLM 0.3.3版本中则表现正常。这表明问题可能与vLLM框架的版本更新有关。
-
校准数据集影响:量化过程中的校准数据集质量和多样性对最终量化效果有显著影响。不合适的校准数据可能导致量化后的模型出现异常行为。
解决方案与实践建议
-
基础模型验证:
- 在进行量化前,务必确保原始模型在不量化的情况下能够正常工作
- 如果基础模型已有问题,量化后的问题可能会被放大
-
校准数据集优化:
- 增加校准数据集的大小和多样性
- 使用与目标任务相关的数据作为校准集(如有用户使用Alpaca数据作为校准集后问题得到解决)
- 确保校准数据覆盖模型可能遇到的各种输入场景
-
vLLM版本选择:
- 对于Qwen1.5系列模型,可考虑使用vLLM 0.3.3版本
- 注意vLLM 0.3.3不支持Qwen1.5的LoRA部署
- 跟踪vLLM的更新,关注相关问题的修复情况
-
量化参数调整:
- 尝试不同的量化参数组合
- 考虑使用更保守的量化策略,牺牲部分效率换取稳定性
实践经验分享
根据用户反馈,以下实践经验值得参考:
- 使用Alpaca数据作为AWQ量化的校准集后,在vLLM 0.4.1.post1版本上部署未再出现感叹号问题
- 官方提供的Qwen1.5-32B-Chat-int4量化版本在vLLM部署时更容易出现此问题
- 72B参数规模的模型也出现过类似现象,表明这可能是一个跨模型规模的共性问题
结论与展望
Qwen3系列模型在量化部署过程中出现的感叹号问题是一个典型的技术挑战,涉及模型量化、框架兼容性和数据处理等多个方面。通过优化校准数据、选择合适的部署框架版本以及谨慎调整量化参数,大多数情况下可以解决或缓解这一问题。
随着量化技术和推理框架的不断进步,这类问题有望得到更好的解决。建议用户持续关注Qwen3和vLLM等项目的更新,及时应用最新的优化方案。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0360Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++086Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp课程中屏幕放大器知识点优化分析7 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析
最新内容推荐
RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
189
2.14 K

React Native鸿蒙化仓库
C++
205
284

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

Ascend Extension for PyTorch
Python
58
89

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
967
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
545
76

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
192

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
392
23