GraphSAINT 开源项目使用教程
2024-09-18 01:45:31作者:薛曦旖Francesca
1. 项目目录结构及介绍
GraphSAINT 项目的目录结构如下:
GraphSAINT/
├── data/
│ ├── open_graph_benchmark/
│ └── ...
├── graphsaint/
│ ├── cython_sampler.pyx
│ ├── graph_samplers.py
│ ├── globals.py
│ ├── tensorflow_version/
│ │ ├── model.py
│ │ └── train.py
│ ├── pytorch_version/
│ │ ├── model.py
│ │ └── train.py
│ └── ...
├── ipdps19_cpp/
│ ├── README.md
│ └── ...
├── train_config/
│ ├── table2/
│ ├── explore/
│ └── open_graph_benchmark/
├── .gitignore
├── LICENSE
├── README.md
├── convert.py
├── dataset_details.md
├── overview_diagram.png
└── run_graphsaint.sh
目录结构介绍
- data/: 存放数据集的目录,包括
open_graph_benchmark
等子目录。 - graphsaint/: 核心代码目录,包含 TensorFlow 和 PyTorch 版本的实现,以及 Cython 采样器和全局配置文件。
- ipdps19_cpp/: 包含 IEEE/IPDPS 2019 论文的 C++ 实现。
- train_config/: 训练配置文件目录,包含不同实验的配置文件。
- .gitignore: Git 忽略文件。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- convert.py: 数据转换脚本。
- dataset_details.md: 数据集详细信息。
- overview_diagram.png: 项目概览图。
- run_graphsaint.sh: 项目启动脚本。
2. 项目启动文件介绍
run_graphsaint.sh
run_graphsaint.sh
是项目的启动脚本,用于编译 Cython 模块并启动训练。脚本内容如下:
#!/bin/bash
# 编译 Cython 模块
python graphsaint/setup.py build_ext --inplace
# 启动训练
python -m graphsaint <tensorflow/pytorch>_version train --data_prefix /data/<dataset_name> --train_config <path to train_config yml> --gpu <GPU number>
启动步骤
- 编译 Cython 模块: 运行
python graphsaint/setup.py build_ext --inplace
编译 Cython 模块。 - 启动训练: 使用
python -m graphsaint <tensorflow/pytorch>_version train
命令启动训练,指定数据集路径和配置文件路径。
3. 项目的配置文件介绍
train_config/
train_config/
目录下包含多个配置文件,用于不同实验的参数设置。以下是一些关键配置文件的介绍:
- table2/: 包含用于重现 Table 2 结果的配置文件。
- explore/: 包含用于探索更深 GNN 和不同 GNN 架构的配置文件。
- open_graph_benchmark/: 包含用于 Open Graph Benchmark 数据集的配置文件。
配置文件格式
配置文件采用 YAML 格式,示例如下:
train:
batch_size: 512
num_epochs: 100
learning_rate: 0.001
weight_decay: 0.0005
model:
type: GAT
num_layers: 2
hidden_units: 64
sampler:
type: RW
num_walks: 10
walk_length: 20
配置文件参数说明
- train: 训练相关参数,如批量大小、训练轮数、学习率等。
- model: 模型相关参数,如模型类型、层数、隐藏单元数等。
- sampler: 采样器相关参数,如采样类型、随机游走次数、游走长度等。
通过调整这些配置文件,可以灵活地进行不同实验和模型训练。
热门项目推荐
鸿蒙开发工具大赶集
本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。011jeepay
Jeepay计全支付是一套适合企业使用的开源支付系统,提供聚合支付接口,包括交易、退款、转账、分账等。已对接微信,支付宝,云闪付官方接口,以及三方支付和银行的间联通道,支持聚合支付场景。Java02hippo4j
🚀 异步线程池框架,支持线程池动态变更&监控&报警,无需修改代码轻松引入。Java02每日精选项目
🔥🔥 02.12日推荐:反编译二进制代码🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~029Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie048毕方Talon工具
本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06mybatis-plus
mybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区018- DDeepSeek-R1探索新一代推理模型,DeepSeek-R1系列以大规模强化学习为基础,实现自主推理,表现卓越,推理行为强大且独特。开源共享,助力研究社区深入探索LLM推理能力,推动行业发展。【此简介由AI生成】。Python00
热门内容推荐
最新内容推荐
项目优选
收起

Python - 100天从新手到大师
Python
509
97
Ffit-framework
面向全场景的 Java 企业级插件化编程框架,支持聚散部署和共享内存,以一切皆可替换为核心理念,旨在为用户提供一种灵活的服务开发范式。
Java
68
12

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
163
32

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
203
48

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
280
73

🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
44
28

Jeepay计全支付是一套适合企业使用的开源支付系统,提供聚合支付接口,包括交易、退款、转账、分账等。已对接微信,支付宝,云闪付官方接口,以及三方支付和银行的间联通道,支持聚合支付场景。
Java
23
2

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
59
46

🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
181
43

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
900
0