GraphSAINT 开源项目使用教程
2024-09-18 18:21:28作者:薛曦旖Francesca
1. 项目目录结构及介绍
GraphSAINT 项目的目录结构如下:
GraphSAINT/
├── data/
│ ├── open_graph_benchmark/
│ └── ...
├── graphsaint/
│ ├── cython_sampler.pyx
│ ├── graph_samplers.py
│ ├── globals.py
│ ├── tensorflow_version/
│ │ ├── model.py
│ │ └── train.py
│ ├── pytorch_version/
│ │ ├── model.py
│ │ └── train.py
│ └── ...
├── ipdps19_cpp/
│ ├── README.md
│ └── ...
├── train_config/
│ ├── table2/
│ ├── explore/
│ └── open_graph_benchmark/
├── .gitignore
├── LICENSE
├── README.md
├── convert.py
├── dataset_details.md
├── overview_diagram.png
└── run_graphsaint.sh
目录结构介绍
- data/: 存放数据集的目录,包括
open_graph_benchmark等子目录。 - graphsaint/: 核心代码目录,包含 TensorFlow 和 PyTorch 版本的实现,以及 Cython 采样器和全局配置文件。
- ipdps19_cpp/: 包含 IEEE/IPDPS 2019 论文的 C++ 实现。
- train_config/: 训练配置文件目录,包含不同实验的配置文件。
- .gitignore: Git 忽略文件。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- convert.py: 数据转换脚本。
- dataset_details.md: 数据集详细信息。
- overview_diagram.png: 项目概览图。
- run_graphsaint.sh: 项目启动脚本。
2. 项目启动文件介绍
run_graphsaint.sh
run_graphsaint.sh 是项目的启动脚本,用于编译 Cython 模块并启动训练。脚本内容如下:
#!/bin/bash
# 编译 Cython 模块
python graphsaint/setup.py build_ext --inplace
# 启动训练
python -m graphsaint <tensorflow/pytorch>_version train --data_prefix /data/<dataset_name> --train_config <path to train_config yml> --gpu <GPU number>
启动步骤
- 编译 Cython 模块: 运行
python graphsaint/setup.py build_ext --inplace编译 Cython 模块。 - 启动训练: 使用
python -m graphsaint <tensorflow/pytorch>_version train命令启动训练,指定数据集路径和配置文件路径。
3. 项目的配置文件介绍
train_config/
train_config/ 目录下包含多个配置文件,用于不同实验的参数设置。以下是一些关键配置文件的介绍:
- table2/: 包含用于重现 Table 2 结果的配置文件。
- explore/: 包含用于探索更深 GNN 和不同 GNN 架构的配置文件。
- open_graph_benchmark/: 包含用于 Open Graph Benchmark 数据集的配置文件。
配置文件格式
配置文件采用 YAML 格式,示例如下:
train:
batch_size: 512
num_epochs: 100
learning_rate: 0.001
weight_decay: 0.0005
model:
type: GAT
num_layers: 2
hidden_units: 64
sampler:
type: RW
num_walks: 10
walk_length: 20
配置文件参数说明
- train: 训练相关参数,如批量大小、训练轮数、学习率等。
- model: 模型相关参数,如模型类型、层数、隐藏单元数等。
- sampler: 采样器相关参数,如采样类型、随机游走次数、游走长度等。
通过调整这些配置文件,可以灵活地进行不同实验和模型训练。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
Ascend Extension for PyTorch
Python
221
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.86 K
React Native鸿蒙化仓库
JavaScript
260
322