首页
/ GraphSAINT 开源项目使用教程

GraphSAINT 开源项目使用教程

2024-09-18 18:19:40作者:薛曦旖Francesca

1. 项目目录结构及介绍

GraphSAINT 项目的目录结构如下:

GraphSAINT/
├── data/
│   ├── open_graph_benchmark/
│   └── ...
├── graphsaint/
│   ├── cython_sampler.pyx
│   ├── graph_samplers.py
│   ├── globals.py
│   ├── tensorflow_version/
│   │   ├── model.py
│   │   └── train.py
│   ├── pytorch_version/
│   │   ├── model.py
│   │   └── train.py
│   └── ...
├── ipdps19_cpp/
│   ├── README.md
│   └── ...
├── train_config/
│   ├── table2/
│   ├── explore/
│   └── open_graph_benchmark/
├── .gitignore
├── LICENSE
├── README.md
├── convert.py
├── dataset_details.md
├── overview_diagram.png
└── run_graphsaint.sh

目录结构介绍

  • data/: 存放数据集的目录,包括 open_graph_benchmark 等子目录。
  • graphsaint/: 核心代码目录,包含 TensorFlow 和 PyTorch 版本的实现,以及 Cython 采样器和全局配置文件。
  • ipdps19_cpp/: 包含 IEEE/IPDPS 2019 论文的 C++ 实现。
  • train_config/: 训练配置文件目录,包含不同实验的配置文件。
  • .gitignore: Git 忽略文件。
  • LICENSE: 项目许可证文件。
  • README.md: 项目介绍和使用说明。
  • convert.py: 数据转换脚本。
  • dataset_details.md: 数据集详细信息。
  • overview_diagram.png: 项目概览图。
  • run_graphsaint.sh: 项目启动脚本。

2. 项目启动文件介绍

run_graphsaint.sh

run_graphsaint.sh 是项目的启动脚本,用于编译 Cython 模块并启动训练。脚本内容如下:

#!/bin/bash

# 编译 Cython 模块
python graphsaint/setup.py build_ext --inplace

# 启动训练
python -m graphsaint <tensorflow/pytorch>_version train --data_prefix /data/<dataset_name> --train_config <path to train_config yml> --gpu <GPU number>

启动步骤

  1. 编译 Cython 模块: 运行 python graphsaint/setup.py build_ext --inplace 编译 Cython 模块。
  2. 启动训练: 使用 python -m graphsaint <tensorflow/pytorch>_version train 命令启动训练,指定数据集路径和配置文件路径。

3. 项目的配置文件介绍

train_config/

train_config/ 目录下包含多个配置文件,用于不同实验的参数设置。以下是一些关键配置文件的介绍:

  • table2/: 包含用于重现 Table 2 结果的配置文件。
  • explore/: 包含用于探索更深 GNN 和不同 GNN 架构的配置文件。
  • open_graph_benchmark/: 包含用于 Open Graph Benchmark 数据集的配置文件。

配置文件格式

配置文件采用 YAML 格式,示例如下:

train:
  batch_size: 512
  num_epochs: 100
  learning_rate: 0.001
  weight_decay: 0.0005

model:
  type: GAT
  num_layers: 2
  hidden_units: 64

sampler:
  type: RW
  num_walks: 10
  walk_length: 20

配置文件参数说明

  • train: 训练相关参数,如批量大小、训练轮数、学习率等。
  • model: 模型相关参数,如模型类型、层数、隐藏单元数等。
  • sampler: 采样器相关参数,如采样类型、随机游走次数、游走长度等。

通过调整这些配置文件,可以灵活地进行不同实验和模型训练。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
24
7
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.24 K
pytorchpytorch
Ascend Extension for PyTorch
Python
169
190
flutter_flutterflutter_flutter
暂无简介
Dart
617
140
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
cangjie_compilercangjie_compiler
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
cangjie_testcangjie_test
仓颉编程语言测试用例。
Cangjie
36
852
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258