GraphSAINT 开源项目使用教程
2024-09-18 13:23:43作者:薛曦旖Francesca
1. 项目目录结构及介绍
GraphSAINT 项目的目录结构如下:
GraphSAINT/
├── data/
│ ├── open_graph_benchmark/
│ └── ...
├── graphsaint/
│ ├── cython_sampler.pyx
│ ├── graph_samplers.py
│ ├── globals.py
│ ├── tensorflow_version/
│ │ ├── model.py
│ │ └── train.py
│ ├── pytorch_version/
│ │ ├── model.py
│ │ └── train.py
│ └── ...
├── ipdps19_cpp/
│ ├── README.md
│ └── ...
├── train_config/
│ ├── table2/
│ ├── explore/
│ └── open_graph_benchmark/
├── .gitignore
├── LICENSE
├── README.md
├── convert.py
├── dataset_details.md
├── overview_diagram.png
└── run_graphsaint.sh
目录结构介绍
- data/: 存放数据集的目录,包括
open_graph_benchmark等子目录。 - graphsaint/: 核心代码目录,包含 TensorFlow 和 PyTorch 版本的实现,以及 Cython 采样器和全局配置文件。
- ipdps19_cpp/: 包含 IEEE/IPDPS 2019 论文的 C++ 实现。
- train_config/: 训练配置文件目录,包含不同实验的配置文件。
- .gitignore: Git 忽略文件。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- convert.py: 数据转换脚本。
- dataset_details.md: 数据集详细信息。
- overview_diagram.png: 项目概览图。
- run_graphsaint.sh: 项目启动脚本。
2. 项目启动文件介绍
run_graphsaint.sh
run_graphsaint.sh 是项目的启动脚本,用于编译 Cython 模块并启动训练。脚本内容如下:
#!/bin/bash
# 编译 Cython 模块
python graphsaint/setup.py build_ext --inplace
# 启动训练
python -m graphsaint <tensorflow/pytorch>_version train --data_prefix /data/<dataset_name> --train_config <path to train_config yml> --gpu <GPU number>
启动步骤
- 编译 Cython 模块: 运行
python graphsaint/setup.py build_ext --inplace编译 Cython 模块。 - 启动训练: 使用
python -m graphsaint <tensorflow/pytorch>_version train命令启动训练,指定数据集路径和配置文件路径。
3. 项目的配置文件介绍
train_config/
train_config/ 目录下包含多个配置文件,用于不同实验的参数设置。以下是一些关键配置文件的介绍:
- table2/: 包含用于重现 Table 2 结果的配置文件。
- explore/: 包含用于探索更深 GNN 和不同 GNN 架构的配置文件。
- open_graph_benchmark/: 包含用于 Open Graph Benchmark 数据集的配置文件。
配置文件格式
配置文件采用 YAML 格式,示例如下:
train:
batch_size: 512
num_epochs: 100
learning_rate: 0.001
weight_decay: 0.0005
model:
type: GAT
num_layers: 2
hidden_units: 64
sampler:
type: RW
num_walks: 10
walk_length: 20
配置文件参数说明
- train: 训练相关参数,如批量大小、训练轮数、学习率等。
- model: 模型相关参数,如模型类型、层数、隐藏单元数等。
- sampler: 采样器相关参数,如采样类型、随机游走次数、游走长度等。
通过调整这些配置文件,可以灵活地进行不同实验和模型训练。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355