GraphSAINT 开源项目使用教程
2024-09-18 03:48:02作者:薛曦旖Francesca
1. 项目目录结构及介绍
GraphSAINT 项目的目录结构如下:
GraphSAINT/
├── data/
│ ├── open_graph_benchmark/
│ └── ...
├── graphsaint/
│ ├── cython_sampler.pyx
│ ├── graph_samplers.py
│ ├── globals.py
│ ├── tensorflow_version/
│ │ ├── model.py
│ │ └── train.py
│ ├── pytorch_version/
│ │ ├── model.py
│ │ └── train.py
│ └── ...
├── ipdps19_cpp/
│ ├── README.md
│ └── ...
├── train_config/
│ ├── table2/
│ ├── explore/
│ └── open_graph_benchmark/
├── .gitignore
├── LICENSE
├── README.md
├── convert.py
├── dataset_details.md
├── overview_diagram.png
└── run_graphsaint.sh
目录结构介绍
- data/: 存放数据集的目录,包括
open_graph_benchmark等子目录。 - graphsaint/: 核心代码目录,包含 TensorFlow 和 PyTorch 版本的实现,以及 Cython 采样器和全局配置文件。
- ipdps19_cpp/: 包含 IEEE/IPDPS 2019 论文的 C++ 实现。
- train_config/: 训练配置文件目录,包含不同实验的配置文件。
- .gitignore: Git 忽略文件。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- convert.py: 数据转换脚本。
- dataset_details.md: 数据集详细信息。
- overview_diagram.png: 项目概览图。
- run_graphsaint.sh: 项目启动脚本。
2. 项目启动文件介绍
run_graphsaint.sh
run_graphsaint.sh 是项目的启动脚本,用于编译 Cython 模块并启动训练。脚本内容如下:
#!/bin/bash
# 编译 Cython 模块
python graphsaint/setup.py build_ext --inplace
# 启动训练
python -m graphsaint <tensorflow/pytorch>_version train --data_prefix /data/<dataset_name> --train_config <path to train_config yml> --gpu <GPU number>
启动步骤
- 编译 Cython 模块: 运行
python graphsaint/setup.py build_ext --inplace编译 Cython 模块。 - 启动训练: 使用
python -m graphsaint <tensorflow/pytorch>_version train命令启动训练,指定数据集路径和配置文件路径。
3. 项目的配置文件介绍
train_config/
train_config/ 目录下包含多个配置文件,用于不同实验的参数设置。以下是一些关键配置文件的介绍:
- table2/: 包含用于重现 Table 2 结果的配置文件。
- explore/: 包含用于探索更深 GNN 和不同 GNN 架构的配置文件。
- open_graph_benchmark/: 包含用于 Open Graph Benchmark 数据集的配置文件。
配置文件格式
配置文件采用 YAML 格式,示例如下:
train:
batch_size: 512
num_epochs: 100
learning_rate: 0.001
weight_decay: 0.0005
model:
type: GAT
num_layers: 2
hidden_units: 64
sampler:
type: RW
num_walks: 10
walk_length: 20
配置文件参数说明
- train: 训练相关参数,如批量大小、训练轮数、学习率等。
- model: 模型相关参数,如模型类型、层数、隐藏单元数等。
- sampler: 采样器相关参数,如采样类型、随机游走次数、游走长度等。
通过调整这些配置文件,可以灵活地进行不同实验和模型训练。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
248
2.48 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
89
React Native鸿蒙化仓库
JavaScript
217
298
暂无简介
Dart
548
119
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
600
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
411
Ascend Extension for PyTorch
Python
88
118
仓颉编程语言运行时与标准库。
Cangjie
124
102
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
125