首页
/ GraphSAINT 开源项目教程

GraphSAINT 开源项目教程

2024-09-13 06:17:01作者:劳婵绚Shirley

1. 项目介绍

GraphSAINT 是一个用于在大规模图数据上训练图神经网络(GNN)的通用且灵活的框架。该项目由 Hanqing Zeng、Hongkuan Zhou、Ajitesh Srivastava、Rajgopal Kannan 和 Viktor Prasanna 等人开发,并在 ICLR 2020 和 IPDPS 2019 上发表。GraphSAINT 通过图采样技术解决了传统 GNN 训练中的“邻居爆炸”问题,显著提高了训练效率和准确性。

GraphSAINT 的核心思想是通过从训练图中采样子图来构建小批量数据,而不是在 GNN 层之间采样节点或边。每个迭代中,从采样的子图中构建完整的 GNN,从而确保所有层中的节点数量固定且连接良好。此外,GraphSAINT 还提出了归一化技术和采样算法来消除偏差并减少方差。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保您的环境中安装了以下依赖项:

  • Python >= 3.6.8
  • TensorFlow >= 1.12.0 / PyTorch >= 1.1.0
  • Cython >= 0.29.2
  • numpy >= 1.14.3
  • scipy >= 1.1.0
  • scikit-learn >= 0.19.1
  • pyyaml >= 3.12
  • g++ >= 5.4.0
  • openmp >= 4.0

2.2 安装 GraphSAINT

首先,克隆 GraphSAINT 的 GitHub 仓库:

git clone https://github.com/GraphSAINT/GraphSAINT.git
cd GraphSAINT

接下来,编译 Cython 模块:

python graphsaint/setup.py build_ext --inplace

2.3 数据准备

GraphSAINT 支持多种图数据集。您可以从 Google Drive 或 BaiduYun 下载预处理好的数据集,并将其放置在 GraphSAINT/data/ 目录下。

2.4 运行训练

使用以下命令启动训练:

python -m graphsaint <tensorflow/pytorch>_version train --data_prefix /path/to/data --train_config /path/to/train_config.yml --gpu -1

其中,<tensorflow/pytorch>_version 指定使用 TensorFlow 或 PyTorch 版本,--data_prefix 指定数据路径,--train_config 指定训练配置文件,--gpu -1 表示使用 CPU 进行训练。

3. 应用案例和最佳实践

3.1 案例一:PPI 数据集上的 GNN 训练

在 PPI(蛋白质-蛋白质相互作用)数据集上,GraphSAINT 展示了其在准确性和训练时间上的优越性能。通过使用 GraphSAINT,研究人员能够在 PPI 数据集上达到新的 F1 分数记录。

3.2 案例二:Reddit 数据集上的 GNN 训练

Reddit 数据集是一个大规模的社交网络图数据集。GraphSAINT 通过高效的图采样技术,显著减少了训练时间,同时保持了高准确性。

3.3 最佳实践

  • 选择合适的采样器:GraphSAINT 支持多种图采样器,如节点采样、边采样、随机游走采样等。根据具体任务选择合适的采样器可以显著提升性能。
  • 调整训练配置:通过调整训练配置文件中的参数,如学习率、批量大小等,可以进一步优化模型性能。

4. 典型生态项目

4.1 PyTorch Geometric

PyTorch Geometric 是一个基于 PyTorch 的图神经网络库,提供了丰富的图数据处理和 GNN 模型实现。GraphSAINT 与 PyTorch Geometric 结合使用,可以进一步扩展其功能和应用场景。

4.2 OGB (Open Graph Benchmark)

OGB 是一个大规模图数据基准,提供了多种图数据集和评估指标。GraphSAINT 在 OGB 数据集上的表现优异,为研究人员提供了一个强大的工具来评估和比较不同的 GNN 方法。

4.3 DGL (Deep Graph Library)

DGL 是一个灵活且高效的图神经网络库,支持多种 GNN 模型和图数据处理功能。GraphSAINT 与 DGL 结合使用,可以进一步提升图神经网络的训练效率和准确性。

通过以上模块的介绍,您应该已经对 GraphSAINT 有了全面的了解,并能够快速启动和应用该项目。希望这篇教程对您有所帮助!

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
509
97
Ffit-framework
面向全场景的 Java 企业级插件化编程框架,支持聚散部署和共享内存,以一切皆可替换为核心理念,旨在为用户提供一种灵活的服务开发范式。
Java
68
12
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
163
32
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
203
48
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
280
73
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
44
28
jeepayjeepay
Jeepay计全支付是一套适合企业使用的开源支付系统,提供聚合支付接口,包括交易、退款、转账、分账等。已对接微信,支付宝,云闪付官方接口,以及三方支付和银行的间联通道,支持聚合支付场景。
Java
23
2
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
59
46
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
181
43
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
900
0