bpftrace项目中biosnoop工具在新内核上的兼容性问题分析
背景介绍
bpftrace是一个基于eBPF技术的高级跟踪工具,它允许用户通过简单的脚本语言来监控和分析Linux系统的运行情况。其中,biosnoop是bpftrace工具集中的一个重要脚本,用于跟踪和显示块设备I/O操作的详细信息。
问题现象
在较新版本的Linux内核(如6.11.4)上运行biosnoop脚本时,会出现无法正常工作的情况。具体表现为:
- 脚本尝试附加到多个内核函数时失败,提示"Invalid argument"错误
- 警告信息显示相关内核函数可能被内联、不存在或被标记为"notrace"
- 最终无法捕获任何块设备I/O操作信息
问题根源分析
经过深入分析,发现问题的根本原因在于Linux内核5.0版本引入的ABI变更。具体变化包括:
- 关键的内核函数
blk_account_io_start和blk_account_io_done被声明为static并进行了内联优化 - 内核开发者添加了新的tracepoint:
block:block_io_start和block:block_io_done作为替代方案 - 新的tracepoint缺少磁盘名称信息,而这是biosnoop工具输出的重要字段
技术解决方案探讨
针对这一问题,开发团队考虑了多种解决方案:
-
添加bpftrace内置函数:实现设备ID到磁盘名称的转换功能,通过异步查询
/proc/diskstats实现。虽然可行,但会增加bpftrace的复杂性。 -
添加内核kfunc:在内核中添加新的kfunc专门用于这种转换。这种方法需要内核社区的支持,且只适用于未来内核版本。
-
简化输出内容:放弃显示磁盘名称,改为输出设备ID。这是最直接的解决方案,保持了工具的可用性。
最终,开发团队选择了第三种方案,因为它:
- 实现简单,不需要修改内核或增加bpftrace复杂性
- 保持了工具的核心功能
- 用户可以通过其他方式自行转换设备ID为名称
技术细节补充
对于希望深入了解的读者,这里补充一些技术背景:
-
内核函数内联:现代编译器会对小函数进行内联优化,特别是标记为
static的函数。这使得它们无法通过kprobe进行跟踪。 -
tracepoint设计:内核tracepoint是ABI稳定的接口,但设计时通常会考虑性能因素,可能不会包含所有可能需要的字段。
-
设备ID与名称映射:Linux块设备通过主/次设备号标识,而名称(如sda)是用户空间概念,需要通过
/proc/diskstats或sysfs查询。
结论与建议
bpftrace项目已经通过修改biosnoop脚本来适应新内核的变化,用户可以通过更新到最新版本来解决这一问题。对于需要磁盘名称的高级用户,可以考虑:
- 结合biosnoop输出和其他工具(如lsblk)进行后期处理
- 使用BCC版本的biosnoop工具,它实现了完整的名称解析功能
- 在需要精确监控的生产环境中,考虑使用特定版本的内核
这一案例也展示了eBPF生态系统中工具与内核版本兼容性的重要性,提醒我们在使用这类工具时需要关注内核版本的变化。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00