首页
/ Garth项目使用教程

Garth项目使用教程

2024-10-10 11:10:40作者:裴麒琰

1. 项目介绍

Garth是一个用于与Garmin SSO(Single Sign-On)认证和Garmin Connect API交互的Python客户端。它允许用户通过OAuth1和OAuth2进行认证,并支持多因素认证(MFA)。Garth的主要目标是提供一个稳定且易于使用的接口,使用户能够轻松地从Garmin Connect下载和分析个人健康数据。

2. 项目快速启动

2.1 安装Garth

首先,确保你已经安装了Python环境。然后使用pip安装Garth:

python -m pip install garth

2.2 克隆项目并设置环境

克隆Garth项目到本地,并进入项目目录:

gh repo clone matin/garth
cd garth

2.3 运行测试

在项目目录下,使用以下命令安装依赖并运行测试:

make install
make test

2.4 认证和保存会话

使用以下代码进行认证并保存会话:

import garth
from getpass import getpass

email = input("Enter email address: ")
password = getpass("Enter password: ")

# 如果启用了MFA,登录过程中会提示输入MFA代码
garth.login(email, password)

# 保存会话到本地
garth.save("~/garth")

2.5 恢复会话

如果之前保存了会话,可以使用以下代码恢复会话:

import garth
from garth.exc import GarthException

try:
    garth.resume("~/garth")
    print(garth.client.username)
except GarthException:
    print("Session expired, please log in again.")

3. 应用案例和最佳实践

3.1 使用Google Colab进行数据分析

Garth支持在Google Colab中使用,用户可以下载长达三年的健康数据,并使用Pandas和Matplotlib进行数据分析。以下是一个简单的示例:

from garth import connectapi
import pandas as pd
import matplotlib.pyplot as plt

# 获取每日睡眠数据
sleep = connectapi(
    f"/wellness-service/wellness/dailySleepData/{garth.client.username}",
    params={"date": "2023-07-05", "nonSleepBufferMinutes": 60}
)

# 将数据转换为DataFrame
sleep_df = pd.DataFrame(sleep)

# 绘制睡眠数据图表
plt.figure(figsize=(10, 6))
plt.plot(sleep_df['calendarDate'], sleep_df['overallStressLevel'], marker='o')
plt.xlabel('Date')
plt.ylabel('Stress Level')
plt.title('Daily Stress Levels')
plt.show()

3.2 使用ChatGPT进行数据分析

用户可以将下载的CSV数据上传到ChatGPT,并使用ChatGPT的高级数据分析功能进行深入分析。例如,分析不同星期的睡眠模式和运动习惯。

4. 典型生态项目

4.1 Garmin Connect API

Garth的核心功能是与Garmin Connect API进行交互。用户可以通过Garth访问Garmin Connect的多种数据,包括每日步数、睡眠质量、心率变异性(HRV)等。

4.2 Google Colab

Google Colab是一个免费的Jupyter笔记本环境,支持Python代码的运行和数据分析。Garth与Google Colab的结合,使得用户可以轻松地在云端进行数据处理和可视化。

4.3 Pandas和Matplotlib

Pandas是一个强大的数据处理库,Matplotlib是一个常用的绘图库。Garth与这两个库的结合,使得用户可以高效地处理和可视化Garmin Connect的数据。

通过以上步骤,你可以快速上手Garth项目,并利用其强大的功能进行个人健康数据的分析和可视化。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5