Garth项目使用教程
1. 项目介绍
Garth是一个用于与Garmin SSO(Single Sign-On)认证和Garmin Connect API交互的Python客户端。它允许用户通过OAuth1和OAuth2进行认证,并支持多因素认证(MFA)。Garth的主要目标是提供一个稳定且易于使用的接口,使用户能够轻松地从Garmin Connect下载和分析个人健康数据。
2. 项目快速启动
2.1 安装Garth
首先,确保你已经安装了Python环境。然后使用pip安装Garth:
python -m pip install garth
2.2 克隆项目并设置环境
克隆Garth项目到本地,并进入项目目录:
gh repo clone matin/garth
cd garth
2.3 运行测试
在项目目录下,使用以下命令安装依赖并运行测试:
make install
make test
2.4 认证和保存会话
使用以下代码进行认证并保存会话:
import garth
from getpass import getpass
email = input("Enter email address: ")
password = getpass("Enter password: ")
# 如果启用了MFA,登录过程中会提示输入MFA代码
garth.login(email, password)
# 保存会话到本地
garth.save("~/garth")
2.5 恢复会话
如果之前保存了会话,可以使用以下代码恢复会话:
import garth
from garth.exc import GarthException
try:
garth.resume("~/garth")
print(garth.client.username)
except GarthException:
print("Session expired, please log in again.")
3. 应用案例和最佳实践
3.1 使用Google Colab进行数据分析
Garth支持在Google Colab中使用,用户可以下载长达三年的健康数据,并使用Pandas和Matplotlib进行数据分析。以下是一个简单的示例:
from garth import connectapi
import pandas as pd
import matplotlib.pyplot as plt
# 获取每日睡眠数据
sleep = connectapi(
f"/wellness-service/wellness/dailySleepData/{garth.client.username}",
params={"date": "2023-07-05", "nonSleepBufferMinutes": 60}
)
# 将数据转换为DataFrame
sleep_df = pd.DataFrame(sleep)
# 绘制睡眠数据图表
plt.figure(figsize=(10, 6))
plt.plot(sleep_df['calendarDate'], sleep_df['overallStressLevel'], marker='o')
plt.xlabel('Date')
plt.ylabel('Stress Level')
plt.title('Daily Stress Levels')
plt.show()
3.2 使用ChatGPT进行数据分析
用户可以将下载的CSV数据上传到ChatGPT,并使用ChatGPT的高级数据分析功能进行深入分析。例如,分析不同星期的睡眠模式和运动习惯。
4. 典型生态项目
4.1 Garmin Connect API
Garth的核心功能是与Garmin Connect API进行交互。用户可以通过Garth访问Garmin Connect的多种数据,包括每日步数、睡眠质量、心率变异性(HRV)等。
4.2 Google Colab
Google Colab是一个免费的Jupyter笔记本环境,支持Python代码的运行和数据分析。Garth与Google Colab的结合,使得用户可以轻松地在云端进行数据处理和可视化。
4.3 Pandas和Matplotlib
Pandas是一个强大的数据处理库,Matplotlib是一个常用的绘图库。Garth与这两个库的结合,使得用户可以高效地处理和可视化Garmin Connect的数据。
通过以上步骤,你可以快速上手Garth项目,并利用其强大的功能进行个人健康数据的分析和可视化。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00