Garth项目使用教程
1. 项目介绍
Garth是一个用于与Garmin SSO(Single Sign-On)认证和Garmin Connect API交互的Python客户端。它允许用户通过OAuth1和OAuth2进行认证,并支持多因素认证(MFA)。Garth的主要目标是提供一个稳定且易于使用的接口,使用户能够轻松地从Garmin Connect下载和分析个人健康数据。
2. 项目快速启动
2.1 安装Garth
首先,确保你已经安装了Python环境。然后使用pip安装Garth:
python -m pip install garth
2.2 克隆项目并设置环境
克隆Garth项目到本地,并进入项目目录:
gh repo clone matin/garth
cd garth
2.3 运行测试
在项目目录下,使用以下命令安装依赖并运行测试:
make install
make test
2.4 认证和保存会话
使用以下代码进行认证并保存会话:
import garth
from getpass import getpass
email = input("Enter email address: ")
password = getpass("Enter password: ")
# 如果启用了MFA,登录过程中会提示输入MFA代码
garth.login(email, password)
# 保存会话到本地
garth.save("~/garth")
2.5 恢复会话
如果之前保存了会话,可以使用以下代码恢复会话:
import garth
from garth.exc import GarthException
try:
garth.resume("~/garth")
print(garth.client.username)
except GarthException:
print("Session expired, please log in again.")
3. 应用案例和最佳实践
3.1 使用Google Colab进行数据分析
Garth支持在Google Colab中使用,用户可以下载长达三年的健康数据,并使用Pandas和Matplotlib进行数据分析。以下是一个简单的示例:
from garth import connectapi
import pandas as pd
import matplotlib.pyplot as plt
# 获取每日睡眠数据
sleep = connectapi(
f"/wellness-service/wellness/dailySleepData/{garth.client.username}",
params={"date": "2023-07-05", "nonSleepBufferMinutes": 60}
)
# 将数据转换为DataFrame
sleep_df = pd.DataFrame(sleep)
# 绘制睡眠数据图表
plt.figure(figsize=(10, 6))
plt.plot(sleep_df['calendarDate'], sleep_df['overallStressLevel'], marker='o')
plt.xlabel('Date')
plt.ylabel('Stress Level')
plt.title('Daily Stress Levels')
plt.show()
3.2 使用ChatGPT进行数据分析
用户可以将下载的CSV数据上传到ChatGPT,并使用ChatGPT的高级数据分析功能进行深入分析。例如,分析不同星期的睡眠模式和运动习惯。
4. 典型生态项目
4.1 Garmin Connect API
Garth的核心功能是与Garmin Connect API进行交互。用户可以通过Garth访问Garmin Connect的多种数据,包括每日步数、睡眠质量、心率变异性(HRV)等。
4.2 Google Colab
Google Colab是一个免费的Jupyter笔记本环境,支持Python代码的运行和数据分析。Garth与Google Colab的结合,使得用户可以轻松地在云端进行数据处理和可视化。
4.3 Pandas和Matplotlib
Pandas是一个强大的数据处理库,Matplotlib是一个常用的绘图库。Garth与这两个库的结合,使得用户可以高效地处理和可视化Garmin Connect的数据。
通过以上步骤,你可以快速上手Garth项目,并利用其强大的功能进行个人健康数据的分析和可视化。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00