Seurat中基于特定分辨率构建聚类树的方法
2025-07-02 05:16:29作者:傅爽业Veleda
概述
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的工具包。聚类分析是单细胞数据分析的关键步骤,而聚类树(Cluster Tree)能够直观展示不同聚类之间的层次关系。本文将详细介绍如何在Seurat中基于特定分辨率构建聚类树。
聚类树的基本概念
聚类树是一种树状图,展示了不同细胞群之间的相似性和层次关系。在Seurat中,聚类树可以帮助我们理解:
- 不同聚类之间的相似程度
- 聚类合并的潜在可能性
- 数据集的整体结构
构建聚类树的步骤
1. 设置活动聚类标识
在Seurat中,BuildClusterTree()函数默认使用当前活动的细胞标识(Idents)来构建聚类树。要基于特定分辨率(如RNA_snn_res.0.4)构建聚类树,首先需要将该分辨率设置为活动标识:
Idents(seurat_object) <- "RNA_snn_res.0.4"
2. 构建聚类树
设置好活动标识后,可以直接构建聚类树:
seurat_object <- BuildClusterTree(seurat_object)
3. 可视化聚类树
构建完成后,可以使用以下命令可视化聚类树:
cluster_dendrogram <- PlotClusterTree(seurat_object)
print(cluster_dendrogram)
注意事项
-
分辨率选择:不同的分辨率会产生不同数量的聚类。选择合适的分辨率对分析结果至关重要。
-
PCA维度:聚类树的构建基于PCA降维后的空间,确保使用了合适的PCA维度。
-
数据预处理:在构建聚类树前,确保数据已经过标准化、归一化和特征选择等预处理步骤。
高级应用
比较不同分辨率的聚类树
可以构建不同分辨率的聚类树并进行比较,这有助于理解数据在不同粒度下的结构:
# 构建分辨率0.4的聚类树
Idents(seurat_object) <- "RNA_snn_res.0.4"
tree_res0.4 <- BuildClusterTree(seurat_object)
# 构建分辨率0.8的聚类树
Idents(seurat_object) <- "RNA_snn_res.0.8"
tree_res0.8 <- BuildClusterTree(seurat_object)
# 可视化比较
plot(PlotClusterTree(tree_res0.4))
plot(PlotClusterTree(tree_res0.8))
结合UMAP可视化
聚类树可以与UMAP可视化结合使用,提供更全面的数据理解:
# UMAP可视化
DimPlot(seurat_object, reduction = "umap", group.by = "RNA_snn_res.0.4", label = TRUE)
# 聚类树可视化
PlotClusterTree(seurat_object)
常见问题解决
如果在构建聚类树时遇到错误"no applicable method for 'DefaultAssay' applied to an object of class 'factor'",这通常是因为直接对meta.data中的列而非Seurat对象进行操作。正确的做法是先设置活动标识,再对Seurat对象进行操作。
总结
在Seurat中基于特定分辨率构建聚类树是一个简单但强大的分析工具。通过合理选择分辨率和正确设置活动标识,研究人员可以深入了解单细胞数据的层次结构,为后续分析提供重要参考。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218