GLEE:通用对象基础模型,图像与视频的大规模处理
项目介绍
GLEE(General Object Foundation Model for Images and Videos at Scale)是一个由Junfeng Wu、Yi Jiang、Qihao Liu、Zehuan Yuan、Xiang Bai和Song Bai共同开发的开源项目。该项目在CVPR2024上被选为Highlight,展示了其在图像和视频处理领域的卓越性能。GLEE通过联合训练超过一千万张来自不同基准数据集的图像,构建了一个多样化的训练集,从而赋予模型强大的泛化能力。
GLEE不仅能够处理广泛的对象感知任务,如对象检测、实例分割、定位、多目标跟踪(MOT)、视频实例分割(VIS)、视频对象分割(VOS)、交互式分割和跟踪,还支持开放世界/大词汇量图像和视频检测与分割任务。其核心架构包括图像编码器、文本编码器、视觉提示器和对象解码器,能够根据文本和视觉输入无缝提取对象。
项目技术分析
GLEE的技术架构设计精巧,结合了图像和文本处理的优势。文本编码器能够处理与任务相关的任意描述,包括对象类别列表、对象名称、对象描述和引用表达式。视觉提示器则将用户输入(如点、边界框、涂鸦)编码为相应的视觉表示,这些表示与文本信息结合后,通过检测器提取图像中的对象。
GLEE的训练数据集涵盖了16个不同的数据集,充分利用了现有的标注数据和成本效益高的自动标注数据。这种广泛的训练数据集使得GLEE在处理各种对象感知任务时表现出色,尤其是在零样本迁移能力方面表现突出。
项目及技术应用场景
GLEE的应用场景非常广泛,涵盖了从图像到视频的多种对象感知任务。具体包括:
- 图像级任务:对象检测、实例分割、定位等。
- 视频级任务:多目标跟踪、视频实例分割、视频对象分割等。
- 交互式任务:支持用户通过点、边界框、涂鸦等方式进行交互式分割和跟踪。
- 开放世界任务:支持大词汇量和开放世界的图像和视频检测与分割。
GLEE的强大泛化能力和零样本迁移能力使其成为各种视觉任务的理想基础模型,可以作为其他架构或模型的增强组件。
项目特点
- 广泛的数据集支持:GLEE在超过一千万张图像上进行训练,数据集涵盖了16个不同的基准数据集,确保了模型的广泛适用性和强大泛化能力。
- 多任务处理能力:GLEE能够同时处理多种对象感知任务,包括图像和视频任务,且在多个任务上保持SOTA性能。
- 零样本迁移能力:GLEE展示了卓越的零样本迁移能力,能够在未见过的数据集上表现出色,适用于各种实际应用场景。
- 用户友好:GLEE提供了详细的安装、数据准备、训练和测试指南,以及模型库和在线演示,方便用户快速上手和应用。
结语
GLEE作为一个通用对象基础模型,不仅在技术上实现了突破,还在实际应用中展现了巨大的潜力。无论你是研究者、开发者还是企业用户,GLEE都能为你提供强大的视觉处理能力,助力你在图像和视频处理领域取得更多成果。立即访问项目页面,了解更多详情并开始使用GLEE吧!
ERNIE-4.5-VL-424B-A47B-Paddle
ERNIE-4.5-VL-424B-A47B 是百度推出的多模态MoE大模型,支持文本与视觉理解,总参数量424B,激活参数量47B。基于异构混合专家架构,融合跨模态预训练与高效推理优化,具备强大的图文生成、推理和问答能力。适用于复杂多模态任务场景00pangu-pro-moe
盘古 Pro MoE (72B-A16B):昇腾原生的分组混合专家模型014kornia
🐍 空间人工智能的几何计算机视觉库Python00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。00
热门内容推荐
最新内容推荐
项目优选









