VLMEvalKit项目中的HallusionBench数据集评测指标解析
2025-07-03 08:46:03作者:戚魁泉Nursing
评测指标计算方法详解
在VLMEvalKit项目的多模态大模型评测中,HallusionBench数据集的得分计算方式与其他常见评测数据集存在显著差异。该数据集采用三项关键指标的平均值作为最终得分,这种设计反映了对模型综合能力的多维评估需求。
核心指标构成
HallusionBench的评测结果包含三个核心指标:
- aAcc(All Accuracy):整体准确率,反映模型在所有测试样本上的综合表现
- fAcc(Fact Accuracy):事实准确性,专门评估模型对客观事实的识别能力
- qAcc(Question Accuracy):问题回答准确率,衡量模型对问题意图的理解程度
得分计算公式
最终得分 = (aAcc + fAcc + qAcc) / 3
以Qwen2-VL-7B模型为例:
- 实测aAcc为67.92%
- 实测fAcc为37.86%
- 实测qAcc为43.95%
- 最终得分 = (67.92 + 37.86 + 43.95)/3 ≈ 49.91
这种计算方法确保了模型需要在不同维度的能力上均衡发展,而非仅依赖单一指标的优势。
与其他数据集的对比
VLMEvalKit项目中不同数据集采用不同的得分计算策略:
-
MMBench数据集
- 采用英文测试集(test_en)和中文测试集(test_cn)得分的平均值
- 体现模型的多语言处理能力
-
MMMU数据集
- 直接使用验证集(validation)的Overall分数作为最终结果
- 该数据集本身已包含丰富的学科分类评估
-
其他多数数据集
- 通常直接采用输出结果中的准确率(acc)或总体(Overall)分数
- 如ScienceQA、POPE等数据集均采用这种直接取值方式
技术意义与评估理念
HallusionBench的三指标平均法具有重要的技术意义:
- 防作弊设计:防止模型通过优化单一指标来"刷分"
- 能力平衡性:要求模型同时具备事实识别、问题理解和综合推理能力
- 评估全面性:相比单一准确率指标,能更全面地反映模型真实水平
这种评估方式特别适合对幻觉(hallucination)现象敏感的评测场景,因为幻觉问题往往同时涉及事实错误和逻辑错误。
实践建议
对于使用VLMEvalKit的研究人员:
- 在对比模型性能时,务必确认各数据集的得分计算方式
- 针对HallusionBench的优化需要平衡三个指标,避免单一指标优化
- 当复现结果与榜单存在差异时,首先检查指标计算方法是否正确
- 多维度分析结果可以帮助发现模型的特定能力短板
这种精细化的评估体系代表了多模态大模型评测的发展趋势,未来可能会有更多数据集采用类似的复合指标评估方法。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Jetson TX2开发板官方资源完全指南:从入门到精通 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
309
2.71 K
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
362
2.96 K
暂无简介
Dart
600
135
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.07 K
616
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
638
241
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
774
74
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
56
826
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
466