Hands-on-RL项目中的Actor-Critic算法实现细节解析
2025-06-24 18:19:18作者:廉彬冶Miranda
引言
在强化学习领域,Actor-Critic算法因其结合了策略梯度和值函数估计的优点而广受欢迎。然而,在实际实现过程中,算法的执行顺序和梯度计算细节往往会对训练效果产生重大影响。本文将通过分析Hands-on-RL项目中Actor-Critic算法的实现,深入探讨这些关键细节。
算法实现的核心问题
在标准的Actor-Critic实现中,通常会遇到两个主要组件的更新顺序问题:
- Critic网络:负责估计状态值函数,为Actor提供评估基准
- Actor网络:负责策略优化,基于Critic提供的评估进行参数更新
原始实现分析
项目中的原始实现采用了以下顺序:
# 计算TD目标和误差
td_target = rewards + self.gamma * self.critic(next_states) * (1 - dones)
td_delta = td_target - self.critic(states)
# 计算Actor损失
log_probs = torch.log(self.actor(states).gather(1, actions))
actor_loss = torch.mean(-log_probs * td_delta.detach())
# 计算Critic损失
critic_loss = torch.mean(F.mse_loss(self.critic(states), td_target.detach()))
# 梯度清零和反向传播
self.actor_optimizer.zero_grad()
self.critic_optimizer.zero_grad()
actor_loss.backward()
critic_loss.backward()
# 参数更新
self.actor_optimizer.step()
self.critic_optimizer.step()
这种实现方式的关键在于:
- 先计算所有必要的中间变量
- 然后统一进行梯度计算和参数更新
- 使用detach()方法切断不必要的计算图连接
修改后的问题实现
有开发者尝试将代码重构为更"结构化"的形式:
# 更新Critic网络
td_target = rewards + self.gamma * self.critic(next_states) * (1 - dones)
critic_loss = torch.mean(F.mse_loss(self.critic(states), td_target.detach()))
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# 更新Actor网络
td_delta = td_target - self.critic(states)
log_probs = torch.log(self.actor(states).gather(1, actions))
actor_loss = torch.mean(-log_probs * td_delta.detach())
actor_loss.backward()
self.actor_optimizer.step()
这种修改导致了训练效果显著下降,原因在于破坏了算法的时间一致性。
技术原理深度解析
1. 计算图的动态性
在PyTorch中,计算图是动态构建的。当Critic网络参数更新后,重新计算td_delta时,Critic的输出已经发生了变化,导致Actor基于"过时"的Critic评估进行更新。
2. detach()的作用
detach()方法创建了一个不需要梯度的新张量,将其从当前计算图中分离出来。在原始实现中:
td_delta.detach()确保Actor更新时不会影响Critic的梯度计算td_target.detach()防止Critic的MSE损失影响TD目标的计算
3. 时间一致性要求
Actor-Critic算法要求:
- Actor的更新必须基于当前Critic的状态值估计
- Critic的更新不应影响当前步骤中Actor的梯度计算
- 两个网络的更新应该基于同一时刻的状态评估
最佳实践建议
- 保持计算顺序:先计算所有必要的中间变量,再进行参数更新
- 合理使用detach:在需要固定某个值不被反向传播影响时使用
- 统一梯度计算:避免在参数更新后立即使用更新后的网络进行计算
- 调试技巧:可以打印网络参数的变化来验证更新逻辑是否正确
结论
Actor-Critic算法的实现细节对训练效果有着至关重要的影响。理解计算图的动态性、梯度传播机制以及detach方法的作用,是正确实现这类算法的关键。通过本文的分析,开发者可以更好地把握强化学习算法实现中的这些微妙但重要的细节。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134