Hierarchical Actor-Critic (HAC) 开源项目教程
2024-09-18 03:48:32作者:明树来
项目介绍
Hierarchical Actor-Critic (HAC) 是一个用于强化学习(Reinforcement Learning, RL)的层次化算法框架。该框架旨在通过将复杂的任务分解为多个层次的子任务,从而提高学习效率和样本利用率。HAC 的核心思想是将每个层次的策略独立训练,假设低层次的策略已经是最优的,从而解决多层次策略联合学习时的不稳定性问题。
HAC 项目由 Andrew Levy 等人开发,并在 ICLR 2019 会议上发表了相关论文。该项目在多个领域,包括机器人控制和游戏 AI,展示了其优越的性能。
项目快速启动
环境准备
在开始之前,请确保您的环境中已经安装了以下依赖:
- Python 3.6 或更高版本
- PyTorch
- OpenAI Gym
您可以通过以下命令安装这些依赖:
pip install torch gym
克隆项目
首先,克隆 HAC 项目的代码库到本地:
git clone https://github.com/andrew-j-levy/Hierarchical-Actor-Critic-HAC-.git
cd Hierarchical-Actor-Critic-HAC-
训练模型
进入项目目录后,您可以通过运行以下命令来训练一个新的模型:
python train.py
测试模型
训练完成后,您可以使用以下命令来测试预训练的模型:
python test.py
应用案例和最佳实践
应用案例
HAC 在多个领域展示了其强大的应用潜力,以下是一些典型的应用案例:
- 机器人控制:通过将复杂的机器人控制任务分解为多个层次的子任务,HAC 能够有效地提高机器人的学习效率和控制精度。
- 游戏 AI:在游戏 AI 领域,HAC 可以用于训练复杂的策略,例如在策略游戏中实现多层次的决策过程。
最佳实践
在使用 HAC 时,以下是一些最佳实践建议:
- 任务分解:合理地将复杂任务分解为多个层次的子任务,确保每个层次的任务具有明确的定义和目标。
- 超参数调整:根据具体任务调整 HAC 的超参数,例如层次的数量、每个层次的时间步长等。
- 数据预处理:在训练前对数据进行适当的预处理,以提高模型的学习效率和性能。
典型生态项目
HAC 作为一个开源项目,与其他强化学习相关的开源项目有着紧密的联系。以下是一些典型的生态项目:
- OpenAI Gym:一个用于开发和比较强化学习算法的工具包,HAC 可以与 Gym 中的各种环境进行集成。
- PyTorch:一个流行的深度学习框架,HAC 使用 PyTorch 作为其主要的计算后端。
- Stable Baselines:一个基于 TensorFlow 和 PyTorch 的强化学习算法库,提供了多种强化学习算法的实现,可以与 HAC 进行对比和集成。
通过这些生态项目的支持,HAC 能够更好地应用于各种复杂的强化学习任务中。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355