Hierarchical Actor-Critic (HAC) 开源项目教程
2024-09-18 03:48:32作者:明树来
项目介绍
Hierarchical Actor-Critic (HAC) 是一个用于强化学习(Reinforcement Learning, RL)的层次化算法框架。该框架旨在通过将复杂的任务分解为多个层次的子任务,从而提高学习效率和样本利用率。HAC 的核心思想是将每个层次的策略独立训练,假设低层次的策略已经是最优的,从而解决多层次策略联合学习时的不稳定性问题。
HAC 项目由 Andrew Levy 等人开发,并在 ICLR 2019 会议上发表了相关论文。该项目在多个领域,包括机器人控制和游戏 AI,展示了其优越的性能。
项目快速启动
环境准备
在开始之前,请确保您的环境中已经安装了以下依赖:
- Python 3.6 或更高版本
- PyTorch
- OpenAI Gym
您可以通过以下命令安装这些依赖:
pip install torch gym
克隆项目
首先,克隆 HAC 项目的代码库到本地:
git clone https://github.com/andrew-j-levy/Hierarchical-Actor-Critic-HAC-.git
cd Hierarchical-Actor-Critic-HAC-
训练模型
进入项目目录后,您可以通过运行以下命令来训练一个新的模型:
python train.py
测试模型
训练完成后,您可以使用以下命令来测试预训练的模型:
python test.py
应用案例和最佳实践
应用案例
HAC 在多个领域展示了其强大的应用潜力,以下是一些典型的应用案例:
- 机器人控制:通过将复杂的机器人控制任务分解为多个层次的子任务,HAC 能够有效地提高机器人的学习效率和控制精度。
- 游戏 AI:在游戏 AI 领域,HAC 可以用于训练复杂的策略,例如在策略游戏中实现多层次的决策过程。
最佳实践
在使用 HAC 时,以下是一些最佳实践建议:
- 任务分解:合理地将复杂任务分解为多个层次的子任务,确保每个层次的任务具有明确的定义和目标。
- 超参数调整:根据具体任务调整 HAC 的超参数,例如层次的数量、每个层次的时间步长等。
- 数据预处理:在训练前对数据进行适当的预处理,以提高模型的学习效率和性能。
典型生态项目
HAC 作为一个开源项目,与其他强化学习相关的开源项目有着紧密的联系。以下是一些典型的生态项目:
- OpenAI Gym:一个用于开发和比较强化学习算法的工具包,HAC 可以与 Gym 中的各种环境进行集成。
- PyTorch:一个流行的深度学习框架,HAC 使用 PyTorch 作为其主要的计算后端。
- Stable Baselines:一个基于 TensorFlow 和 PyTorch 的强化学习算法库,提供了多种强化学习算法的实现,可以与 HAC 进行对比和集成。
通过这些生态项目的支持,HAC 能够更好地应用于各种复杂的强化学习任务中。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134