Ditto 项目教程
1. 项目介绍
Ditto 是一个基于预训练语言模型的实体匹配(Entity Matching, EM)解决方案。它利用预训练语言模型(如 BERT)的强大语言理解能力,通过微调来实现实体匹配任务。Ditto 将每个数据条目序列化为文本序列,并将实体匹配问题转化为序列对分类问题。此外,Ditto 还采用了多种优化技术,如摘要生成、领域知识注入和数据增强,以进一步提升匹配模型的性能。
2. 项目快速启动
2.1 环境准备
确保你的环境中安装了以下依赖:
- Python 3.7.7
- PyTorch 1.9
- HuggingFace Transformers 4.9.2
- Spacy 及其
en_core_web_lg
模型 - NVIDIA Apex(用于 fp16 训练)
安装依赖:
conda install -c conda-forge nvidia-apex
pip install -r requirements.txt
python -m spacy download en_core_web_lg
2.2 数据准备
Ditto 的输入数据格式为序列化的数据条目对,每个条目包含多个属性和值。例如:
COL title VAL microsoft visio standard 2007 version upgrade COL manufacturer VAL microsoft COL price VAL 129.95
完整的输入对格式为:
<entry_1> \t <entry_2> \t <label>
其中 <label>
为 0(不匹配)或 1(匹配)。
2.3 训练模型
使用以下命令训练匹配模型:
CUDA_VISIBLE_DEVICES=0 python train_ditto.py \
--task Structured/Beer \
--batch_size 64 \
--max_len 64 \
--lr 3e-5 \
--n_epochs 40 \
--lm distilbert \
--fp16 \
--da del \
--dk product \
--summarize
2.4 运行匹配模型
使用以下命令运行匹配模型:
CUDA_VISIBLE_DEVICES=0 python matcher.py \
--task wdc_all_small \
--input_path input/input_small.jsonl \
--output_path output/output_small.jsonl \
--lm distilbert \
--max_len 64 \
--use_gpu \
--fp16 \
--checkpoint_path checkpoints/
3. 应用案例和最佳实践
3.1 电商产品匹配
Ditto 在电商产品匹配中表现出色,特别是在处理不同来源的产品数据时。通过序列化产品信息并利用预训练语言模型进行匹配,Ditto 能够高效地识别出相同或相似的产品。
3.2 学术出版物匹配
在学术领域,Ditto 可以用于匹配不同数据库中的学术出版物。通过提取出版物的关键信息并进行序列化,Ditto 能够准确地匹配出相同的出版物,从而帮助研究人员整合和分析数据。
4. 典型生态项目
4.1 DeepMatcher
DeepMatcher 是一个用于实体匹配的深度学习框架,与 Ditto 类似,它也利用了预训练语言模型来提升匹配性能。两者可以结合使用,进一步提升实体匹配的效果。
4.2 Transformers
HuggingFace 的 Transformers 库是 Ditto 的核心依赖之一。通过使用 Transformers 库中的预训练模型,Ditto 能够快速适应不同的实体匹配任务。
4.3 Spacy
Spacy 是一个强大的自然语言处理库,Ditto 利用 Spacy 进行文本序列化和预处理,从而提升模型的匹配精度。
通过以上模块的介绍和实践,你可以快速上手并应用 Ditto 项目,解决实际的实体匹配问题。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









