Ditto 项目教程
1. 项目介绍
Ditto 是一个基于预训练语言模型的实体匹配(Entity Matching, EM)解决方案。它利用预训练语言模型(如 BERT)的强大语言理解能力,通过微调来实现实体匹配任务。Ditto 将每个数据条目序列化为文本序列,并将实体匹配问题转化为序列对分类问题。此外,Ditto 还采用了多种优化技术,如摘要生成、领域知识注入和数据增强,以进一步提升匹配模型的性能。
2. 项目快速启动
2.1 环境准备
确保你的环境中安装了以下依赖:
- Python 3.7.7
- PyTorch 1.9
- HuggingFace Transformers 4.9.2
- Spacy 及其
en_core_web_lg模型 - NVIDIA Apex(用于 fp16 训练)
安装依赖:
conda install -c conda-forge nvidia-apex
pip install -r requirements.txt
python -m spacy download en_core_web_lg
2.2 数据准备
Ditto 的输入数据格式为序列化的数据条目对,每个条目包含多个属性和值。例如:
COL title VAL microsoft visio standard 2007 version upgrade COL manufacturer VAL microsoft COL price VAL 129.95
完整的输入对格式为:
<entry_1> \t <entry_2> \t <label>
其中 <label> 为 0(不匹配)或 1(匹配)。
2.3 训练模型
使用以下命令训练匹配模型:
CUDA_VISIBLE_DEVICES=0 python train_ditto.py \
--task Structured/Beer \
--batch_size 64 \
--max_len 64 \
--lr 3e-5 \
--n_epochs 40 \
--lm distilbert \
--fp16 \
--da del \
--dk product \
--summarize
2.4 运行匹配模型
使用以下命令运行匹配模型:
CUDA_VISIBLE_DEVICES=0 python matcher.py \
--task wdc_all_small \
--input_path input/input_small.jsonl \
--output_path output/output_small.jsonl \
--lm distilbert \
--max_len 64 \
--use_gpu \
--fp16 \
--checkpoint_path checkpoints/
3. 应用案例和最佳实践
3.1 电商产品匹配
Ditto 在电商产品匹配中表现出色,特别是在处理不同来源的产品数据时。通过序列化产品信息并利用预训练语言模型进行匹配,Ditto 能够高效地识别出相同或相似的产品。
3.2 学术出版物匹配
在学术领域,Ditto 可以用于匹配不同数据库中的学术出版物。通过提取出版物的关键信息并进行序列化,Ditto 能够准确地匹配出相同的出版物,从而帮助研究人员整合和分析数据。
4. 典型生态项目
4.1 DeepMatcher
DeepMatcher 是一个用于实体匹配的深度学习框架,与 Ditto 类似,它也利用了预训练语言模型来提升匹配性能。两者可以结合使用,进一步提升实体匹配的效果。
4.2 Transformers
HuggingFace 的 Transformers 库是 Ditto 的核心依赖之一。通过使用 Transformers 库中的预训练模型,Ditto 能够快速适应不同的实体匹配任务。
4.3 Spacy
Spacy 是一个强大的自然语言处理库,Ditto 利用 Spacy 进行文本序列化和预处理,从而提升模型的匹配精度。
通过以上模块的介绍和实践,你可以快速上手并应用 Ditto 项目,解决实际的实体匹配问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00