**Cyclical Learning Rates for Keras (CLR) 使用指南**
2024-09-26 18:58:09作者:曹令琨Iris
该项目位于 GitHub,提供了Keras的回调功能以支持循环学习率策略,灵感来源于Leslie Smith的研究论文“Cyclical Learning Rates for Training Neural Networks”。以下是关于如何理解和使用此项目的详细指南。
1. 目录结构及介绍
.
├── images # 存放示例图表和图像
├── LICENSE # 项目授权许可文件(MIT)
├── README.md # 主要的说明文件,介绍了项目目的和基本用法
├── __init__.py # 包初始化文件
├── clr_callback.py # 实现CyclicalLearningRate回调的核心代码
├── clr_callback_tests.ipynb # 测试和演示CLR回调使用的Jupyter Notebook
└── [其他潜在的辅助或测试文件]
images
目录包含了各种策略的学习率变化图,帮助理解不同的CLR模式。LICENSE
明确了项目的开放源码使用条款,遵循MIT协议。README.md
是项目的主要文档,解释了项目背景、使用方法以及各策略的工作原理。__init__.py
确保该目录被视为Python包。clr_callback.py
包含关键类CyclicalLR
,是应用CLR策略的回调实现实体。clr_callback_tests.ipynb
是一个交互式笔记本,用于展示和测试不同CLR设置的效果。
2. 项目的启动文件介绍
项目本身不直接提供一个典型的"启动文件",因为它是作为库集成到你的现有Keras训练流程中。要应用这个项目,你需要在你的Keras模型训练脚本中导入并使用clr_callback.py
中定义的CyclicalLR
回调。例如,在你的训练脚本中添加以下引入和回调设置:
from clr_callback import CyclicalLR
# 示例训练过程
model = define_your_model()
clr = CyclicalLR(base_lr=0.001, max_lr=0.006, step_size=2000, mode='triangular')
model.fit(train_data, train_labels, epochs=your_epochs, batch_size=your_batch_size, callbacks=[clr])
3. 项目的配置文件介绍
项目的核心配置不是通过独立的配置文件管理,而是通过实例化CyclicalLR
类时传递的参数完成的。这些参数包括但不限于:
- base_lr: 初始学习率,也是循环的下界。
- max_lr: 循环的上界,定义了循环的幅度。
- step_size: 半个周期内的迭代次数。
- mode: 循环策略类型,如'triangular', 'triangular2', 或 'exp_range'。
- gamma: 'exp_range'模式下的缩放因子。
- scale_fn: 自定义的规模函数,用于更灵活地控制学习率的变化。
- scale_mode: 用于指定
scale_fn
评估的基准,可以是'cycle'或'iterations'。
因此,配置是动态的,取决于你在创建CyclicalLR
实例时所指定的参数值。这允许用户无需修改项目代码即可调整和实验不同的学习率策略。确保根据你的具体需求调整这些参数以优化模型训练过程。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K