Malcolm项目自动化测试框架的设计与实现
背景介绍
Malcolm作为一个网络安全分析平台,随着项目功能的不断丰富和复杂化,手动测试已经无法满足开发需求。项目团队认识到需要建立一个自动化测试框架来确保构建质量和功能稳定性。本文将详细介绍Malcolm自动化测试框架的设计思路和实现方案。
测试框架核心需求
自动化测试框架需要满足以下几个关键需求:
-
跨平台支持:至少能够在Linux系统上运行,理想情况下还应支持Kubernetes、Windows和MacOS等其他环境。
-
环境隔离:采用虚拟机方式运行Malcolm实例,确保测试环境的独立性和可重复性。
-
测试定义标准化:每个测试应包含输入数据、查询定义和预期结果三要素。
-
全生命周期管理:能够自动完成Malcolm实例的创建、配置、测试执行和销毁全过程。
技术选型与实现方案
虚拟机管理工具
项目团队评估了多种虚拟机管理方案:
-
Vagrant:支持多种虚拟化后端(libvirt、VMware、VirtualBox等),已有相关脚本示例,适合快速搭建测试环境。
-
Virter:专为测试设计的轻量级工具,配合vmshed可以构建完整的测试流水线。
测试执行流程
测试框架的执行流程设计如下:
-
环境准备:通过脚本自动创建全新的Malcolm虚拟机实例。
-
服务就绪检测:等待所有Malcolm服务完全启动并准备就绪。
-
数据导入:将测试用例指定的数据文件(如PCAP、EVTX等)上传到Malcolm实例。
-
数据处理监控:确保所有上传的数据被完整处理。
-
查询执行:通过Malcolm API执行预定义的查询操作。
-
结果验证:将查询结果与预期结果进行比对,判断测试是否通过。
-
环境清理:测试完成后自动销毁测试环境。
测试用例设计
每个测试用例采用目录结构组织,包含以下关键组件:
-
测试数据:可以是实际的网络抓包文件(PCAP)或Windows事件日志(EVTX),也可以是外部数据源的引用。
-
查询定义:优先使用Malcolm官方API,必要时也可直接使用底层组件(如OpenSearch)的API。
-
预期结果:标准化的结果文件,用于与实际查询结果进行比对。
测试框架还实现了数据标记机制,每个测试用例的数据都会被标记上唯一标识,确保查询时只针对当前测试的数据集。
实施效果与未来展望
目前实现的测试框架已经能够满足基本需求,包括:
- 自动化创建和销毁测试环境
- 批量执行测试用例
- 自动比对测试结果
- 生成清晰的测试报告
未来可以进一步扩展的方向包括:
- 增加更多类型的测试用例,覆盖更多功能场景。
- 优化测试执行效率,如并行执行测试。
- 增强测试报告功能,提供更详细的分析数据。
- 支持更多运行环境,如云平台和容器编排系统。
通过这套自动化测试框架,Malcolm项目能够更高效地保证代码质量,加快开发迭代速度,为用户提供更稳定的产品体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00