LyCORIS项目中BOFT内存优化问题分析与解决方案
2025-07-02 22:31:01作者:劳婵绚Shirley
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
背景介绍
LyCORIS是一个用于稳定扩散模型微调的开源项目,近期引入了BOFT(Butterfly Orthogonal Fine-Tuning)这一新型微调算法。然而在实际应用中,用户反馈在8GB显存的GPU上运行BOFT时会出现内存不足的问题。
BOFT内存消耗分析
BOFT算法相比传统的Diag-OFT算法具有更高的内存需求,这是由其算法特性决定的:
- 矩阵分解方式:BOFT使用蝴蝶分解结构,需要维护更多的中间变量
- 计算复杂度:在特征变换过程中会产生较大的临时张量
- 全矩阵运算:当前实现强制使用完整矩阵运算以保证信息完整性
测试数据显示,在相同配置下:
- BOFT消耗约5472MB显存
- Diag-OFT仅需3730MB显存
内存优化方案
针对内存问题,LyCORIS开发团队提供了多种优化策略:
1. 梯度检查点技术
启用梯度检查点可以显著降低内存占用,这是深度学习训练中常用的内存优化技术。测试表明,配合梯度检查点后,BOFT的内存占用可降至5472MB。
2. 混合精度训练
使用FP16混合精度训练可以进一步减少内存消耗:
- 纯FP16模式:内存占用约5472MB
- FP8基础模式(需硬件支持):内存可进一步降低
3. 注意力层专用预设
使用preset=attn-only参数可以仅对注意力层应用BOFT,大幅减少参数量:
- 无优化:约7000MB
- 配合梯度检查点:2970-3674MB
未来优化方向
LyCORIS团队计划从以下方面进一步优化BOFT的内存效率:
- 最大m值限制:允许用户自定义分解深度,在内存和信息量间取得平衡
- 自定义反向传播:参考LoHa算法的优化经验,实现更高效的反向计算
- 选择性应用:提供更多预设选项,让用户灵活选择应用BOFT的模型部分
实践建议
对于8GB显存设备的用户,推荐以下配置组合:
- 启用梯度检查点
- 使用FP16混合精度
- 选择
attn-only预设 - 适当降低batch size或分辨率
通过这些优化,可以在有限显存条件下成功运行BOFT微调,同时保持模型性能。随着项目的持续发展,预计BOFT的内存效率还将得到进一步提升。
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
登录后查看全文
热门项目推荐
相关项目推荐
暂无数据
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758