LyCORIS项目中的Butterfly OFT高效调参技术解析
2025-07-02 03:55:20作者:董宙帆
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
背景介绍
在深度学习领域,大型基础模型已成为主流,但从头开始训练这些模型的成本极高。因此,如何高效地将这些强大模型适配到下游任务变得至关重要。LyCORIS项目近期实现了Butterfly OFT(BOFT)这一创新性的参数高效微调方法,为模型适配提供了新的解决方案。
正交微调(OFT)的局限性
正交微调(OFT)是一种有理论基础的微调范式,它通过使用正交矩阵来调整预训练模型的参数。虽然OFT表现出良好的泛化能力,但由于正交矩阵的高维度特性,它仍然需要相当数量的可训练参数。这在一定程度上限制了其在资源受限场景下的应用。
Butterfly OFT的技术突破
Butterfly OFT(BOFT)通过引入蝴蝶结构(Butterfly Structure)来参数化正交矩阵,显著提高了参数效率。这一创新灵感来源于Cooley-Tukey快速傅里叶变换算法中的高效信息传输机制。
BOFT的核心思想是将大型正交矩阵分解为一系列蝴蝶因子矩阵的乘积。这些蝴蝶矩阵具有特殊的稀疏结构,使得它们能够:
- 保持正交变换的特性
- 大幅减少需要训练的参数数量
- 保留足够的信息传输能力
LyCORIS中的实现
LyCORIS项目在2.1.0.dev9版本中完整实现了BOFT方法。实现主要包括三个关键部分:
- 蝴蝶结构的参数化表示:通过特殊的矩阵分解方式表示正交变换
- 高效的矩阵运算:优化蝴蝶矩阵的乘法运算,确保计算效率
- 与现有微调框架的集成:将BOFT无缝集成到LyCORIS的微调生态中
技术优势与应用场景
BOFT的主要优势体现在:
- 参数效率:相比传统OFT可减少30-50%的可训练参数
- 通用性:适用于视觉Transformer、大型语言模型和文本到图像扩散模型
- 灵活性:支持不同规模的模型适配需求
典型应用场景包括:
- 视觉模型的领域适配
- 语言模型的特定任务微调
- 生成模型的风格迁移
实践建议
对于希望尝试BOFT的研究者和开发者,建议:
- 从较小规模的适配任务开始实验
- 注意模型维度和块大小的约束条件
- 逐步调整蝴蝶结构的复杂度以获得最佳效果
未来展望
随着BOFT在LyCORIS项目中的实现和持续优化,这一技术有望成为参数高效微调领域的重要工具。未来可能的发展方向包括:
- 更高效的蝴蝶结构变体
- 与其他参数高效方法的组合使用
- 在更大规模模型上的应用验证
LyCORIS项目对BOFT的实现为深度学习社区提供了一个强大的新工具,将助力更多研究者和开发者高效地利用大型基础模型解决实际问题。
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248