推荐开源项目:CL-REDIS - 基于Common Lisp的高效Redis客户端库
CL-REDIS 是一个强大且稳定的Common Lisp编程语言实现的Redis客户端。它已经过Redis版本3.0.0(具体为2.9.104)的测试,提供了一套简洁易用的接口,使你在Lisp环境中与Redis服务器进行交互变得轻而易举。
使用方法
- 确保Redis服务正在运行。
- 在Lisp环境中执行
(ql:quickload 'cl-redis)加载库。 - 连接服务器,如
(redis:connect :host <主机> :port <端口>),默认主机是127.0.0.1,端口是6379。 - 使用
red包中的命令与服务器交互,例如(red:ping)返回"PONG"。 - 完成操作后,通过
(redis:disconnect)断开连接。 - 或者,可以使用
with-connection宏来包裹你的代码块,自动管理连接的建立和关闭。
功能特性
CL-REDIS提供了完整的Redis命令集,并在REDIS和RED两个包中封装。REDIS包包含了所有功能,而RED包则提供无前缀的命令名,方便直接调用。
库组织结构
系统分为REDIS和RED两个包。所有的功能都在REDIS包内,但为了避免符号冲突,Redis命令默认带有red-前缀。RED包则提供了没有前缀的命令名,以便在不导入整个REDIS包的情况下使用,避免与COMMON-LISP中的其他符号冲突。
安装
通过Quicklisp轻松安装:
(ql:quickload 'cl-redis)
依赖项包括:usocket,flexi-streams,rutils以及仅用于测试的nuts和bordeaux-threads。
调试与错误恢复
设置*echo-p*为T,所有的客户端-服务器通信将被回显到*echo-stream*上,默认是*standard-output*。错误处理模仿了Postmodern,当通信流中断时,会发出redis-connection-error条件并提供:reconnect重启。如果重连成功,将会重新发送Redis命令。此外,connect会在已存在连接时提供:leave和:replace重启选项。
当服务器响应错误回复时,会发出redis-error-reply条件。
还有with-persistent-connection高阶宏,可以在连接断开时尝试自动重新打开连接。
高级用法
- PubSub:支持发布/订阅模式,可以通过创建线程来监听消息。
- Pipelining:用于提高性能的命令批处理,可显著减少执行时间。
内部工作原理
tell和expect这两个泛型函数实现了Redis协议。def-cmd宏用于定义Redis命令,自动处理名称前缀和导出。
待实现功能
- 目前不支持Unix域套接字,但在未来计划中。
- 暂未实现一致性哈希和连接池。
致谢与许可证
CL-REDIS由Vsevolod Dyomkin开发维护,初期阶段由Alexandr Manzyuk贡献部分代码。本项目遵循MIT许可协议。
CL-REDIS以其强大的功能和灵活的设计,为Common Lisp开发者提供了一个高效的Redis客户端解决方案。无论你是初学者还是经验丰富的开发者,都能从中受益,欢迎加入开源社区,共同探索并利用CL-REDIS实现更多可能性!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00