在plotnine中使用geom_smooth进行二项式逻辑回归的注意事项
2025-06-15 04:35:31作者:魏侃纯Zoe
plotnine作为Python中著名的数据可视化库,提供了与R语言ggplot2类似的语法和功能。其中geom_smooth函数常用于添加平滑曲线到散点图中,支持多种平滑方法。本文将重点讨论在使用二项式逻辑回归(binomial family GLM)时可能遇到的问题及其解决方案。
问题现象
当用户尝试使用geom_smooth配合二项式逻辑回归时,可能会遇到类似以下的错误:
AttributeError: 'str' object has no attribute 'link'
这个错误通常发生在尝试将family参数直接以字符串形式传递给method_args时,例如:
ggplot(dat, aes(x="x", y="y")) + geom_point() + geom_smooth(method="glm", method_args={"family": "binomial"})
原因分析
plotnine底层使用statsmodels库进行广义线性模型(GLM)拟合。在statsmodels中,family参数需要是一个Family类的实例,而不是简单的字符串。这与R语言中直接使用字符串"binomial"的语法有所不同。
正确使用方法
要正确使用二项式逻辑回归平滑曲线,应该导入statsmodels的family模块,并使用其实例:
from statsmodels.genmod.families import Binomial
ggplot(dat, aes(x="x", y="y")) + geom_point() + geom_smooth(method="glm", method_args={"family": Binomial()})
技术背景
广义线性模型(GLM)是线性回归的扩展,允许响应变量具有非正态分布。二项式逻辑回归是GLM的一种特殊形式,适用于二元响应变量(0/1数据)。在plotnine中实现这一功能时,需要注意:
- 数据格式:y值应为0和1的二元变量
- 模型选择:使用method="glm"指定广义线性模型
- 分布族:必须正确指定Binomial分布族
实际应用示例
假设我们有一组模拟数据,x在0到1之间均匀分布,y是服从伯努利分布的二元变量:
import numpy as np
import pandas as pd
from plotnine import ggplot, aes, geom_point, geom_smooth
from statsmodels.genmod.families import Binomial
# 生成模拟数据
x = np.linspace(0, 1, 100)
y = np.random.binomial(1, 0.5, 100)
dat = pd.DataFrame({"x": x, "y": y})
# 绘制图形
(ggplot(dat, aes(x="x", y="y"))
+ geom_point()
+ geom_smooth(method="glm", method_args={"family": Binomial()})
)
常见误区
- 直接使用字符串"binomial"作为family参数
- 忘记导入statsmodels的Binomial类
- 数据格式不正确(y不是二元变量)
总结
plotnine提供了强大的数据可视化能力,但在使用高级统计方法时需要注意Python与R在实现细节上的差异。对于二项式逻辑回归平滑曲线,正确的方法是使用statsmodels库中的Binomial类实例作为family参数。理解这一区别可以帮助用户避免常见的错误,并充分利用plotnine的统计图形功能。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
195
2.17 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
79

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.36 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
207
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17