hwloc 项目使用教程
2024-10-10 13:51:31作者:翟江哲Frasier
1. 项目介绍
硬件局部性 (hwloc)
hwloc 是一个开源项目,旨在简化并行架构中硬件资源的发现过程。它提供了命令行工具和 C API,用于查询这些资源、它们的局部性、属性和互连关系。hwloc 主要面向高性能计算 (HPC) 应用,但也适用于任何希望在现代计算平台上利用代码和/或数据局部性的项目。
hwloc 提供了命令行工具和 C API,用于获取节点内关键计算元素的分层映射,例如:
- NUMA 内存节点
- 共享缓存
- 处理器包
- 核心和处理单元 (逻辑处理器或“线程”)
- I/O 设备
hwloc 还收集了各种属性,如缓存和内存信息,并且可以在多种操作系统和平台上移植。
2. 项目快速启动
安装 hwloc
首先,确保你的系统上已经安装了 git 和 gcc。然后,按照以下步骤安装 hwloc:
# 克隆仓库
git clone https://github.com/open-mpi/hwloc.git
# 进入目录
cd hwloc
# 生成配置文件
./autogen.sh
# 配置并编译
./configure
make
# 安装
sudo make install
使用 hwloc 命令行工具
安装完成后,你可以使用 lstopo 命令来查看系统的硬件拓扑结构:
lstopo --output-format txt
这将输出系统的硬件拓扑结构,类似于以下内容:
Machine NUMANode L#0 (P#0)
Package L#0
L3 L#0 (4096KB)
L2 L#0 (1024KB)
L1 L#0 (16KB)
Core L#0
PU L#0 (P#0)
PU L#1 (P#8)
L2 L#1 (1024KB)
L1 L#1 (16KB)
Core L#1
PU L#2 (P#4)
PU L#3 (P#12)
Package L#1
L3 L#1 (4096KB)
L2 L#2 (1024KB)
L1 L#2 (16KB)
Core L#2
PU L#4 (P#1)
PU L#5 (P#9)
L2 L#3 (1024KB)
L1 L#3 (16KB)
Core L#3
PU L#6 (P#5)
PU L#7 (P#13)
3. 应用案例和最佳实践
在高性能计算中的应用
hwloc 在高性能计算 (HPC) 中广泛应用,特别是在需要优化任务分配和资源管理的场景中。例如,在 MPI 并行计算中,可以使用 hwloc 来确定每个进程的最佳绑定位置,以减少通信开销并提高计算效率。
最佳实践
- 资源绑定:使用 hwloc 的 API 将进程绑定到特定的 CPU 核心或 NUMA 节点,以减少内存访问延迟。
- 拓扑感知调度:在调度任务时,考虑系统的硬件拓扑结构,以确保任务在最适合的硬件资源上运行。
- 动态资源管理:在运行时动态调整资源分配,以适应不断变化的负载需求。
4. 典型生态项目
Open MPI
Open MPI 是一个开源的 MPI 实现,广泛用于并行计算。hwloc 与 Open MPI 紧密集成,提供了对硬件资源的详细了解,从而帮助 Open MPI 优化任务分配和资源管理。
MPICH
MPICH 是另一个流行的 MPI 实现,也支持与 hwloc 的集成。通过使用 hwloc,MPICH 可以更好地理解系统的硬件拓扑结构,从而提高并行计算的效率。
SLURM
SLURM 是一个开源的作业调度系统,广泛用于 HPC 环境。hwloc 可以与 SLURM 集成,提供对硬件资源的详细了解,从而帮助 SLURM 更有效地调度作业。
通过这些生态项目的集成,hwloc 在并行计算和资源管理中发挥了重要作用,帮助用户更好地利用硬件资源,提高计算效率。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
422
3.25 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869