Apollo iOS 中查询缓存输入对象标准化问题解析
在 Apollo iOS 项目中,开发者经常需要处理 GraphQL 查询结果的缓存问题。本文将深入探讨一个特定的缓存使用场景:当查询包含随时间变化的输入参数时,如何保持缓存的有效性。
问题背景
在移动应用开发中,我们通常会使用 returnCacheDataAndFetch
策略来实现这样的用户体验:应用启动时立即显示缓存的旧数据,同时在后台获取最新数据并更新界面。这种模式在 Apollo iOS 中工作良好,直到遇到一个特殊场景。
考虑以下 GraphQL 查询示例:
query GetStore($storeId: String!, $offerContext: OfferContext!) {
store(id: $storeId) {
title
content(offerContext: $offerContext) {
nestedFields
}
}
}
其中 OfferContext
输入对象包含两个字段:
launchCount
: 应用启动次数(随时间变化)originalApplicationVersion
: 应用原始版本(固定值)
核心挑战
当 launchCount
字段值变化时,Apollo iOS 会认为这是一个全新的查询,导致无法利用已有的缓存数据。然而在实际业务中,launchCount
的变化并不影响 content
字段的返回结果,开发者希望能够忽略这个参数对缓存的影响。
技术解决方案
Apollo iOS 提供了几种潜在的解决方案路径:
-
SchemaConfiguration 自定义缓存键
通过实现
cacheKeyInfo(for:object:)
方法,开发者可以自定义对象的缓存键生成逻辑。这为精细控制缓存行为提供了可能。 -
@fieldPolicy 指令(路线图中)
即将推出的
@fieldPolicy
指令将提供声明式的方式来控制字段级别的缓存策略。该指令预计将支持:- 指定哪些参数参与缓存键计算
- 控制读写缓存的行为
- 通过 Schema 直接配置而无需代码修改
-
底层缓存键生成机制扩展
当前缓存键由
CacheKeyForField
函数生成,未来可能开放这个生成逻辑的自定义能力,允许开发者根据业务需求调整参数参与缓存键计算的方式。
最佳实践建议
对于面临类似问题的开发者,目前可以采取以下策略:
- 评估是否可以通过重构查询参数来避免动态参数影响缓存
- 考虑使用
cacheKeyInfo(for:object:)
方法实现自定义缓存逻辑 - 关注
@fieldPolicy
指令的开发进展,这将成为未来解决此类问题的标准方式
总结
Apollo iOS 正在不断完善其缓存管理系统,以应对复杂的业务场景。对于需要忽略特定输入参数影响缓存的场景,开发者既可以利用现有的自定义缓存键机制,也可以期待即将推出的 @fieldPolicy
指令提供更优雅的解决方案。理解这些机制将帮助开发者构建更高效、用户体验更好的移动应用。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0100AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









