Apollo iOS 中查询缓存输入对象标准化问题解析
在 Apollo iOS 项目中,开发者经常需要处理 GraphQL 查询结果的缓存问题。本文将深入探讨一个特定的缓存使用场景:当查询包含随时间变化的输入参数时,如何保持缓存的有效性。
问题背景
在移动应用开发中,我们通常会使用 returnCacheDataAndFetch 策略来实现这样的用户体验:应用启动时立即显示缓存的旧数据,同时在后台获取最新数据并更新界面。这种模式在 Apollo iOS 中工作良好,直到遇到一个特殊场景。
考虑以下 GraphQL 查询示例:
query GetStore($storeId: String!, $offerContext: OfferContext!) {
store(id: $storeId) {
title
content(offerContext: $offerContext) {
nestedFields
}
}
}
其中 OfferContext 输入对象包含两个字段:
launchCount: 应用启动次数(随时间变化)originalApplicationVersion: 应用原始版本(固定值)
核心挑战
当 launchCount 字段值变化时,Apollo iOS 会认为这是一个全新的查询,导致无法利用已有的缓存数据。然而在实际业务中,launchCount 的变化并不影响 content 字段的返回结果,开发者希望能够忽略这个参数对缓存的影响。
技术解决方案
Apollo iOS 提供了几种潜在的解决方案路径:
-
SchemaConfiguration 自定义缓存键
通过实现
cacheKeyInfo(for:object:)方法,开发者可以自定义对象的缓存键生成逻辑。这为精细控制缓存行为提供了可能。 -
@fieldPolicy 指令(路线图中)
即将推出的
@fieldPolicy指令将提供声明式的方式来控制字段级别的缓存策略。该指令预计将支持:- 指定哪些参数参与缓存键计算
- 控制读写缓存的行为
- 通过 Schema 直接配置而无需代码修改
-
底层缓存键生成机制扩展
当前缓存键由
CacheKeyForField函数生成,未来可能开放这个生成逻辑的自定义能力,允许开发者根据业务需求调整参数参与缓存键计算的方式。
最佳实践建议
对于面临类似问题的开发者,目前可以采取以下策略:
- 评估是否可以通过重构查询参数来避免动态参数影响缓存
- 考虑使用
cacheKeyInfo(for:object:)方法实现自定义缓存逻辑 - 关注
@fieldPolicy指令的开发进展,这将成为未来解决此类问题的标准方式
总结
Apollo iOS 正在不断完善其缓存管理系统,以应对复杂的业务场景。对于需要忽略特定输入参数影响缓存的场景,开发者既可以利用现有的自定义缓存键机制,也可以期待即将推出的 @fieldPolicy 指令提供更优雅的解决方案。理解这些机制将帮助开发者构建更高效、用户体验更好的移动应用。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00