Apollo iOS 中 JSONRequest 和 HTTPRequest 忽略缓存策略的问题解析
2025-06-17 09:45:12作者:宣利权Counsellor
问题背景
在 Apollo iOS 客户端库的使用过程中,开发者发现即使将查询的缓存策略设置为 fetchIgnoringCacheCompletely,系统仍然返回了缓存数据。这显然与预期行为不符,因为该策略本应完全忽略缓存并从服务器获取最新数据。
问题根源
经过深入分析,发现问题出在 JSONRequest 和 HTTPRequest 的实现上。这两个组件在生成 URLRequest 时,没有正确处理传入的 cachePolicy 参数。具体表现为:
- iOS 系统本身通过
URLCache机制提供了请求缓存功能 - 这个功能可以通过
URLRequest的cachePolicy属性进行配置 - Apollo iOS 在创建请求时,没有将自身的缓存策略(
Apollo.CachePolicy)映射为对应的URLRequest.CachePolicy
技术细节
Apollo iOS 提供了多种缓存策略选项:
returnCacheDataElseFetch:优先返回缓存数据,如果没有则从服务器获取fetchIgnoringCacheData:忽略本地缓存数据,但仍可能将响应存入缓存fetchIgnoringCacheCompletely:完全忽略缓存,包括不存储新响应returnCacheDataDontFetch:只返回缓存数据,不从服务器获取returnCacheDataAndFetch:同时返回缓存数据并从服务器获取更新
然而,这些策略并没有正确转换为 iOS 系统级别的缓存控制机制。
解决方案
开发者提出了一个映射方案,将 Apollo 的缓存策略转换为 iOS 的 URLRequest.CachePolicy:
private var requestCachePolicy: URLRequest.CachePolicy {
switch self.cachePolicy {
case .returnCacheDataElseFetch:
.returnCacheDataElseLoad
case .fetchIgnoringCacheData:
.reloadIgnoringLocalCacheData
case .fetchIgnoringCacheCompletely:
// URLRequest 没有完全避免存储响应的选项
.reloadIgnoringLocalCacheData
case .returnCacheDataDontFetch:
.returnCacheDataDontLoad
case .returnCacheDataAndFetch:
// URLRequest 没有对应的行为
.returnCacheDataElseLoad
}
}
注意事项
-
GET 与 POST 的区别:使用 GET 方法时更容易出现缓存问题,因为 iOS 对 POST 请求的缓存行为与 GET 不同。Apollo 默认使用 POST 方法发送 GraphQL 请求。
-
持久化查询:即使使用持久化查询(APQ),GET 方法也不是默认选项。开发者需要明确配置才能使用 GET 方法。
-
缓存控制:最佳实践是遵循服务器返回的
Cache-Control头部指令,这能提供更精确的缓存行为控制。
结论
Apollo iOS 团队已经确认了这个问题,并在后续版本中进行了修复。开发者在使用缓存策略时应当注意:
- 明确了解不同策略的实际行为
- 根据需求选择合适的 HTTP 方法(GET/POST)
- 关注 Apollo iOS 的更新日志,了解缓存策略实现的改进
这个问题的解决确保了 Apollo iOS 的缓存行为更加符合开发者预期,特别是在需要强制从服务器获取最新数据的场景下。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1