Mage项目中的FilterSource设计与多参数匹配优化
背景与问题分析
在Mage这个开源卡牌游戏引擎项目中,Story Circle和Prismatic Circle两张卡牌的实现遇到了技术瓶颈。这两张卡牌的核心机制是允许玩家选择一个特定颜色的伤害来源来防止伤害,但当前的过滤器系统无法准确实现这一功能。
问题的根源在于现有的FilterObject设计存在局限性,特别是在处理伤害来源筛选时,无法同时满足以下需求:
- 对伤害来源进行颜色匹配
- 确保筛选对象是有效的游戏实体(永久物、堆叠对象或卡牌)
- 支持多参数匹配模式
技术方案演进
初始方案:专用FilterSource类
开发团队最初考虑引入专用的FilterSource类,继承自FilterObject。这个方案的优势在于:
- 能够精确匹配TargetSource所遍历的对象类型
- 提供类型安全的筛选机制
- 与现有架构保持一致性
但在实现过程中发现了一些兼容性问题,例如Ajani's Aid卡牌使用了FilterCreaturePermanent,与新的FilterSource不兼容,需要额外编写类型检查和转换逻辑。
改进方案:统一Filter接口
经过深入讨论,团队提出了更根本的解决方案——将四参数match方法提升到Filter接口层面。这一改进具有以下优势:
- 消除重复代码:原先在FilterStackObject、FilterCard和FilterPermanent中分别实现的相似逻辑可以统一
- 增强扩展性:为未来可能新增的过滤器类型提供统一接口
- 保持类型安全:通过泛型机制确保运行时类型正确性
最终方案:FilterObject重构
综合各方意见后,团队决定采用折中方案:
- 保留并完善FilterSource类,确保与TargetSource的兼容性
- 将共享的匹配逻辑上移到FilterObject基类中
- 通过保护构造函数强制使用特定化的过滤器
这一方案既解决了当前卡牌实现的问题,又为系统未来的扩展奠定了基础。
技术实现细节
FilterSource设计要点
FilterSource的核心职责是验证一个游戏对象是否满足作为伤害来源的条件。其关键特性包括:
- 类型验证:确保对象是永久物、堆叠对象或卡牌
- 颜色匹配:支持按选定颜色筛选
- 多条件组合:支持通过谓词链添加额外筛选条件
多参数匹配模式
传统的过滤器匹配通常只考虑对象本身,但在Mage的复杂游戏逻辑中,经常需要基于多个上下文参数进行判断。新的四参数match方法支持:
- 游戏状态上下文
- 玩家信息
- 能力来源
- 目标对象
这种设计极大地增强了过滤器的表达能力,能够处理复杂的游戏交互场景。
实际应用示例
以Story Circle为例,其技术实现现在可以精确表达:
- 入场时选择一种颜色
- 激活能力时:
- 筛选指定颜色的伤害来源
- 确保来源是有效的游戏实体
- 在下一次伤害事件中阻止该伤害
通过新的过滤器系统,这些游戏规则能够被准确、高效地实现,且代码可读性和可维护性都得到了提升。
总结与展望
Mage项目通过这次重构解决了长期存在的过滤器系统局限性问题。技术方案的选择体现了良好的工程权衡:
- 短期需求与长期架构的平衡
- 类型安全与灵活性的兼顾
- 代码复用与专业化的结合
未来,团队计划进一步统一过滤器体系,可能将所有共享方法移至FilterObject基类,为游戏逻辑开发提供更强大、更一致的工具支持。这次改进也为处理类似复杂卡牌机制提供了可复用的技术模式。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00