使用stable-ts项目实现音频转录并生成多版本SRT字幕文件
在音频处理领域,自动语音识别(ASR)技术已经变得越来越成熟。stable-ts作为一个基于Whisper模型的Python库,提供了强大的音频转录功能。本文将介绍如何利用stable-ts实现一次音频转录生成多个不同格式的SRT字幕文件。
核心功能实现
通过stable-ts库,我们可以轻松实现音频转录并生成带时间戳的字幕文件。以下是实现这一功能的关键步骤:
-
模型加载与初始化:使用stable_whisper.load_model函数加载预训练的Whisper模型,支持多种模型大小(base、small、medium等)。
-
音频转录:调用模型的transcribe方法对音频文件进行转录,可以指定语言和是否使用FP16精度加速。
-
字幕分段处理:利用split_by_length方法控制每行字幕显示的字数,生成不同密度的字幕版本。
-
SRT文件生成:通过to_srt_vtt方法生成SRT格式的字幕文件,支持自定义字体颜色等样式。
优化后的实现方案
在原始问题中,用户希望一次转录生成两个不同字数的SRT文件。通过分析,我们发现可以利用result对象的reset和regroup方法避免重复转录,显著提高效率:
# 首次转录并生成3字版本
result = model.transcribe(audio_path)
result.split_by_length(max_words=3)
srt_data_3_words = result.to_srt_vtt(tag=('<font color="#E9950C">', '</font>'))
# 重置状态后生成10字版本
result.reset()
result.regroup().split_by_length(max_words=10)
srt_data_10_words = result.to_srt_vtt(tag=('<font color="#E9950C">', '</font>'))
这种方法只需执行一次耗时的音频转录过程,后续通过调整分段参数即可生成不同版本的字幕文件。
实际应用建议
在实际应用中,我们还可以考虑以下优化:
-
批处理支持:扩展脚本以支持批量处理多个音频文件。
-
动态调整:根据音频内容自动调整每行字数,确保字幕显示时间合理。
-
错误处理:增加对异常情况的处理,如无效音频文件、内存不足等情况。
-
性能监控:添加转录耗时统计功能,帮助用户评估处理效率。
通过stable-ts项目,开发者可以轻松构建高效的音频转录应用,满足不同场景下的字幕生成需求。本文介绍的方法不仅提高了处理效率,还保留了灵活调整字幕格式的能力,是处理音频字幕任务的理想选择。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00