LMDeploy项目中InternVL 2.5 78B模型AWQ量化问题的分析与解决
在深度学习模型部署领域,模型量化是提升推理效率的重要手段之一。本文针对LMDeploy项目中使用AWQ(Activation-aware Weight Quantization)方法量化InternVL 2.5 78B模型时遇到的问题进行深入分析,并提供解决方案。
问题现象
在尝试对InternVL 2.5 78B模型进行AWQ量化时,系统在执行到模型第79层后抛出AssertionError异常。错误信息表明在量化过程中出现了NaN(非数值)值,触发了断言检查失败。
问题分析
InternVL 2.5 78B是一个视觉语言模型(VLM),与纯语言模型(LLM)相比,其量化过程存在一些特殊挑战:
- 数值稳定性问题:模型在量化过程中产生了NaN值,这通常与数值计算不稳定有关
- 数据类型敏感性:视觉语言模型对数据类型(如float16、bfloat16)更为敏感
- 混合模态处理:同时处理视觉和语言两种模态数据增加了量化复杂度
解决方案
经过深入分析,我们确定了以下解决方案:
-
修改数据类型:将模型计算过程中的数据类型从默认的float16改为bfloat16。bfloat16相比float16具有更大的指数位,能更好地保持数值稳定性。
-
关键修改点:在模型构建器中,将
.half()调用替换为.to(torch.bfloat16),确保整个模型使用bfloat16精度进行计算。 -
命令行参数:在最新版本的LMDeploy中,可以直接通过
--dtype=bfloat16参数指定使用bfloat16数据类型。
技术原理
bfloat16(Brain Floating Point)是Google提出的一种16位浮点格式,它保留了与float32相同的指数位(8位),但减少了尾数位(从23位减少到7位)。这种设计使得:
- 数值范围与float32相同,减少了上溢和下溢的风险
- 在深度学习训练和推理中表现出更好的稳定性
- 特别适合大模型和高精度要求的应用场景
对于视觉语言模型这类复杂模型,使用bfloat16可以在保持数值稳定性的同时,仍然获得量化带来的性能优势。
实施建议
对于需要在LMDeploy中进行AWQ量化的用户,建议:
- 对于InternVL等视觉语言模型,始终使用bfloat16数据类型
- 在量化前检查模型各层的输出范围,确保没有异常值
- 对于大型模型(如78B参数),确保有足够的GPU内存进行量化计算
- 监控量化过程中的内存使用情况,必要时调整batch size
总结
模型量化是部署大型视觉语言模型的关键步骤,但需要特别注意数值稳定性问题。通过使用bfloat16数据类型,可以有效解决InternVL 2.5 78B模型在AWQ量化过程中出现的NaN值问题。这一解决方案不仅适用于当前案例,也为其他大型多模态模型的量化提供了参考。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00