GLPI项目中通知邮件标签followup.description的解析与解决方案
2025-06-11 00:56:44作者:柯茵沙
问题背景
在GLPI项目管理系统中,用户反馈在配置邮件通知模板时遇到了标签解析问题。具体表现为:当在邮件模板中使用##followup.description##标签时,系统未能正确替换该标签为实际的跟进内容,而是直接将标签文本显示在发送的邮件中。
技术分析
经过深入分析,发现该问题涉及GLPI系统的邮件模板引擎工作机制。GLPI使用特定的标签语法来处理动态内容的插入。对于跟进内容(Follow-ups)的显示,系统实际上提供了两种不同的处理方式:
- ##timelineitems.description##标签:该标签会显示票据的全部历史跟进记录
- ##followup.description##标签:设计用于显示单个跟进内容
解决方案
要实现正确显示跟进内容,需要在邮件模板中使用正确的标签结构。以下是推荐的实现方式:
##FOREACHfollowups##
<div><strong>描述:</strong></div>
<div><span>##followup.description##</span></div>
##ENDFOREACHfollowups##
这种结构会遍历所有跟进记录并显示每条记录的内容。如果只需要显示最新的跟进记录,可以使用以下优化方案:
##FOREACH LAST 1 followups##
<div><strong>最新跟进:</strong></div>
<div>##followup.description##</div>
##ENDFOREACHfollowups##
实现建议
-
模板设计:在编辑邮件通知模板时,确保将动态内容标签放置在适当的容器元素内,如
<div>或<span>标签中 -
测试验证:修改模板后,建议创建测试票据并添加跟进,触发通知邮件以验证显示效果
-
样式优化:可以根据需要为跟进内容添加CSS样式,提高邮件的可读性
总结
GLPI的邮件通知系统提供了灵活的模板功能,但需要正确理解和使用其标签语法。对于跟进内容的显示,关键在于使用正确的循环结构和标签组合。通过合理配置模板,可以确保系统生成的邮件通知既包含必要的信息,又具有良好的可读性。
对于需要更复杂显示逻辑的场景,建议参考GLPI的模板开发文档,深入了解各种标签的使用方法和限制条件。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
654
仓颉编程语言运行时与标准库。
Cangjie
141
878