Google Cloud Datastore NDB 客户端库指南
项目介绍
Google Cloud Datastore NDB 客户端库 是一个专为在 Google App Engine 的 Python 运行环境中与 Google Cloud Datastore 交互而设计的客户端库。它提供了一套高级数据模型抽象,使得开发者能够更简便地管理和操作云数据。尽管这个库原本是面向Python 2且仅限于App Engine环境,但请注意,对于支持Python 3并兼容非App Engine环境的需求,应转向更新的版本或查看 googleapis/python-ndb。
项目快速启动
在开始之前,确保你已经安装了Google Cloud SDK,并配置好了你的Google Cloud项目。
步骤一:安装库
由于原始仓库已归档,对新项目推荐使用最新版本的ndb库。以下是安装更新后的版本(python-ndb)的方法:
pip install google-cloud-ndb
步骤二:初始化示例
以下是如何创建一个简单的数据模型并在Google Cloud Datastore中存储数据的例子。
首先,导入必要的库并定义数据模型:
from google.cloud import ndb
class User(ndb.Model):
name = ndb.StringProperty()
email = ndb.StringProperty()
# 初始化客户端,通常这一步会在应用的入口处完成
client = ndb.Client()
with client.context():
# 创建一个新的用户实体
new_user = User(name='Alice', email='alice@example.com')
new_user.put() # 将实体保存到Datastore
# 查询用户
key = ndb.Key(User, 'alice-key') # 假设我们知道用户的键
alice = key.get()
print(f"User's name: {alice.name}, Email: {alice.email}")
应用案例和最佳实践
在实际应用中,NDB的高级特性和异步查询能力特别有用。例如,利用其上下文管理器进行事务处理可以保证数据的一致性:
def transfer_funds(sender_key, receiver_key, amount):
with client.transaction():
sender = sender_key.get()
receiver = receiver_key.get()
if sender.balance >= amount:
sender.balance -= amount
receiver.balance += amount
sender.put()
receiver.put()
else:
raise ValueError("Insufficient funds.")
最佳实践中,确保合理组织实体关系,使用缓存策略减少不必要的API调用,并始终关注查询效率,避免全量查询。
典型生态项目
虽然本指引主要集中在datastore-ndb-python项目上,但在现代实践中,开发基于Google Cloud的Python应用时,结合使用google-cloud-ndb和其他Google Cloud Python客户端库是常见的做法。这些生态项目包括但不限于google-cloud-storage、google-cloud-firestore等,它们共同支撑起复杂应用的后端服务。对于构建扩展性强、跨多个Google Cloud服务的应用,理解这些库如何协同工作是非常重要的。
请注意,对于最新的功能和最佳实践,建议参考Google Cloud的官方文档和最新的python-ndb库,以获得对Python 3的支持及适应更广泛的部署场景。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00