首页
/ Google Cloud Datastore NDB 客户端库指南

Google Cloud Datastore NDB 客户端库指南

2024-09-12 07:43:07作者:庞眉杨Will

项目介绍

Google Cloud Datastore NDB 客户端库 是一个专为在 Google App Engine 的 Python 运行环境中与 Google Cloud Datastore 交互而设计的客户端库。它提供了一套高级数据模型抽象,使得开发者能够更简便地管理和操作云数据。尽管这个库原本是面向Python 2且仅限于App Engine环境,但请注意,对于支持Python 3并兼容非App Engine环境的需求,应转向更新的版本或查看 googleapis/python-ndb

项目快速启动

在开始之前,确保你已经安装了Google Cloud SDK,并配置好了你的Google Cloud项目。

步骤一:安装库

由于原始仓库已归档,对新项目推荐使用最新版本的ndb库。以下是安装更新后的版本(python-ndb)的方法:

pip install google-cloud-ndb

步骤二:初始化示例

以下是如何创建一个简单的数据模型并在Google Cloud Datastore中存储数据的例子。

首先,导入必要的库并定义数据模型:

from google.cloud import ndb

class User(ndb.Model):
    name = ndb.StringProperty()
    email = ndb.StringProperty()

# 初始化客户端,通常这一步会在应用的入口处完成
client = ndb.Client()

with client.context():
    # 创建一个新的用户实体
    new_user = User(name='Alice', email='alice@example.com')
    new_user.put()  # 将实体保存到Datastore
    
    # 查询用户
    key = ndb.Key(User, 'alice-key')  # 假设我们知道用户的键
    alice = key.get()
    print(f"User's name: {alice.name}, Email: {alice.email}")

应用案例和最佳实践

在实际应用中,NDB的高级特性和异步查询能力特别有用。例如,利用其上下文管理器进行事务处理可以保证数据的一致性:

def transfer_funds(sender_key, receiver_key, amount):
    with client.transaction():
        sender = sender_key.get()
        receiver = receiver_key.get()
        
        if sender.balance >= amount:
            sender.balance -= amount
            receiver.balance += amount
            sender.put()
            receiver.put()
        else:
            raise ValueError("Insufficient funds.")

最佳实践中,确保合理组织实体关系,使用缓存策略减少不必要的API调用,并始终关注查询效率,避免全量查询。

典型生态项目

虽然本指引主要集中在datastore-ndb-python项目上,但在现代实践中,开发基于Google Cloud的Python应用时,结合使用google-cloud-ndb和其他Google Cloud Python客户端库是常见的做法。这些生态项目包括但不限于google-cloud-storagegoogle-cloud-firestore等,它们共同支撑起复杂应用的后端服务。对于构建扩展性强、跨多个Google Cloud服务的应用,理解这些库如何协同工作是非常重要的。

请注意,对于最新的功能和最佳实践,建议参考Google Cloud的官方文档和最新的python-ndb库,以获得对Python 3的支持及适应更广泛的部署场景。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
73
63
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.29 K
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
921
551
PaddleOCRPaddleOCR
飞桨多语言OCR工具包(实用超轻量OCR系统,支持80+种语言识别,提供数据标注与合成工具,支持服务器、移动端、嵌入式及IoT设备端的训练与部署) Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
47
1
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
273
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
59
16