Google Cloud Datastore NDB 客户端库指南
项目介绍
Google Cloud Datastore NDB 客户端库 是一个专为在 Google App Engine 的 Python 运行环境中与 Google Cloud Datastore 交互而设计的客户端库。它提供了一套高级数据模型抽象,使得开发者能够更简便地管理和操作云数据。尽管这个库原本是面向Python 2且仅限于App Engine环境,但请注意,对于支持Python 3并兼容非App Engine环境的需求,应转向更新的版本或查看 googleapis/python-ndb。
项目快速启动
在开始之前,确保你已经安装了Google Cloud SDK,并配置好了你的Google Cloud项目。
步骤一:安装库
由于原始仓库已归档,对新项目推荐使用最新版本的ndb库。以下是安装更新后的版本(python-ndb)的方法:
pip install google-cloud-ndb
步骤二:初始化示例
以下是如何创建一个简单的数据模型并在Google Cloud Datastore中存储数据的例子。
首先,导入必要的库并定义数据模型:
from google.cloud import ndb
class User(ndb.Model):
name = ndb.StringProperty()
email = ndb.StringProperty()
# 初始化客户端,通常这一步会在应用的入口处完成
client = ndb.Client()
with client.context():
# 创建一个新的用户实体
new_user = User(name='Alice', email='alice@example.com')
new_user.put() # 将实体保存到Datastore
# 查询用户
key = ndb.Key(User, 'alice-key') # 假设我们知道用户的键
alice = key.get()
print(f"User's name: {alice.name}, Email: {alice.email}")
应用案例和最佳实践
在实际应用中,NDB的高级特性和异步查询能力特别有用。例如,利用其上下文管理器进行事务处理可以保证数据的一致性:
def transfer_funds(sender_key, receiver_key, amount):
with client.transaction():
sender = sender_key.get()
receiver = receiver_key.get()
if sender.balance >= amount:
sender.balance -= amount
receiver.balance += amount
sender.put()
receiver.put()
else:
raise ValueError("Insufficient funds.")
最佳实践中,确保合理组织实体关系,使用缓存策略减少不必要的API调用,并始终关注查询效率,避免全量查询。
典型生态项目
虽然本指引主要集中在datastore-ndb-python项目上,但在现代实践中,开发基于Google Cloud的Python应用时,结合使用google-cloud-ndb和其他Google Cloud Python客户端库是常见的做法。这些生态项目包括但不限于google-cloud-storage、google-cloud-firestore等,它们共同支撑起复杂应用的后端服务。对于构建扩展性强、跨多个Google Cloud服务的应用,理解这些库如何协同工作是非常重要的。
请注意,对于最新的功能和最佳实践,建议参考Google Cloud的官方文档和最新的python-ndb库,以获得对Python 3的支持及适应更广泛的部署场景。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00