CVAT学术引用全攻略:从论文引用到研究应用
CVAT(Computer Vision Annotation Tool)作为行业领先的计算机视觉标注工具,已被众多学术研究和工业界项目广泛采用。本文详细介绍CVAT的学术引用规范、相关研究案例以及如何在论文中正确引用该工具,帮助研究者准确引用并扩展CVAT的应用价值。
官方引用规范
CVAT项目提供了标准化的引用元数据,推荐在学术论文中使用以下格式引用:
BibTeX格式
@software{CVAT,
author = {{CVAT.ai Corporation}},
title = {Computer Vision Annotation Tool (CVAT)},
doi = {10.5281/zenodo.4009388},
url = {https://cvat.ai/},
version = {2.8.2},
date = {2023-11-06},
license = {MIT},
}
引用元数据来源
所有引用信息均来自项目根目录下的CITATION.cff文件,该文件遵循CFF(Citation File Format)1.2.0标准,包含以下核心字段:
- 版本信息:
version: 2.8.2 - 发布日期:
date-released: '2023-11-06' - DOI:
10.5281/zenodo.4009388 - 许可证:
license: MIT
相关研究领域应用
CVAT在计算机视觉、机器学习等领域的学术研究中有着广泛应用,主要涉及以下方向:
目标检测与分割
研究者利用CVAT构建大规模标注数据集,训练目标检测模型。项目中的cvat-core/src/annotations-objects.ts模块提供了核心标注功能支持,可实现矩形、多边形等多种形状的标注。
视频序列标注
针对视频数据的时序标注需求,CVAT提供了帧间插值和轨迹跟踪功能,相关实现位于cvat-core/src/frames.ts。这一特性被广泛应用于动作识别、行为分析等研究。
3D点云标注
CVAT的cvat-canvas3d模块支持三维点云数据标注,为自动驾驶、机器人视觉等领域的研究提供了关键工具支持。
引用案例与研究论文
虽然目前项目文档中未直接列出引用CVAT的学术论文,但根据其功能特性和应用场景,以下研究方向的论文可能会引用CVAT:
- 医学影像分析:利用CVAT标注医学影像数据,辅助疾病诊断算法的训练
- 遥感图像解译:通过CVAT标注卫星图像,支持土地利用分类研究
- 工业质检系统:基于CVAT构建缺陷检测数据集,开发自动化质检方案
扩展CVAT功能的研究方向
研究者可基于CVAT源码进行二次开发,探索以下创新方向:
半自动化标注算法
通过扩展cvat-core/src/lambda-manager.ts模块,集成自定义的半自动化标注算法,提高标注效率。
多模态数据标注
利用cvat-data模块的架构,扩展CVAT以支持文本-图像、音频-视频等多模态数据的联合标注。
标注质量评估
基于components/analytics模块的分析能力,开发标注质量自动评估指标和可视化工具。
引用与贡献指南
正确引用方式
除了前文提供的BibTeX格式,还可通过以下方式引用CVAT:
- 文本引用:"我们使用CVAT (版本2.8.2, https://doi.org/10.5281/zenodo.4009388) 对数据集进行标注..."
- 软件引用:在补充材料中注明使用CVAT的具体版本和功能模块
研究贡献提交
如果您的研究基于CVAT进行了功能扩展或算法改进,可通过以下方式贡献回社区:
- 提交Pull Request到项目仓库
- 在changelog.d目录下添加更新说明
- 参与tests目录下的测试用例开发,确保新功能稳定性
通过正确引用和积极贡献,共同推动计算机视觉标注技术的发展。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00