Optax项目中AdamW优化器的参数掩码技术解析
2025-07-07 00:09:50作者:邬祺芯Juliet
背景介绍
在深度学习模型训练过程中,权重衰减(Weight Decay)是一种常用的正则化技术,用于防止模型过拟合。Optax作为JAX生态系统中的优化器库,提供了AdamW优化器的实现,该优化器将权重衰减与Adam优化器分离处理。然而,在实际应用中,我们经常需要对模型参数进行选择性掩码,只对特定参数应用权重衰减。
问题本质
在使用Equinox构建的模型中,开发者希望实现以下功能:
- 对线性层(eqx.nn.Linear)的所有参数应用权重衰减
- 对层归一化(eqx.nn.LayerNorm)的偏置(bias)应用权重衰减
- 对其他参数不应用权重衰减
技术挑战
直接使用Optax的mask参数时遇到了两个主要问题:
- 当mask是PyTree结构时,Optax内部处理会出现异常
- 使用AdamW优化器时,update函数需要显式传入当前参数值,这与Adam等优化器的使用方式不同
解决方案演进
临时解决方案
在Optax修复PR合并前,可以通过修改_src/wrappers.py中的两处代码临时解决问题:
- 将
mask_tree = mask(params) if callable(mask) else mask简化为mask_tree = mask - 同样简化另一处mask处理逻辑
官方修复
Optax项目通过PR #1015彻底解决了这个问题,主要改进包括:
- 正确处理PyTree结构的mask参数
- 保持mask功能在各种优化器中的一致性
最佳实践
使用AdamW优化器时,需要注意以下关键点:
- 参数传递:AdamW的update函数需要显式传入当前参数值
updates, opt_state = optimizer.update(grads, opt_state, params)
- 掩码构建:建议使用Equinox的过滤功能构建掩码
params = eqx.filter(model, eqx.is_array)
mask = jtu.tree_map(set_mask, params, is_leaf=is_layer)
- 优化器初始化:正确初始化带掩码的优化器
optim = optax.adamw(learning_rate=1e-4, mask=mask)
opt_state = optim.init(params)
技术细节解析
掩码函数设计
有效的掩码函数应该能够:
- 识别不同类型的层结构
- 对不同参数应用不同的掩码策略
- 保持与模型参数相同的PyTree结构
示例掩码函数:
def set_mask(x):
if isinstance(x, eqx.nn.Linear):
return jtu.tree_map(lambda _: True, x)
elif isinstance(x, eqx.nn.LayerNorm):
mask = jtu.tree_map(lambda _: False, x)
mask = eqx.tree_at(lambda m: m.bias, mask, True)
return mask
else:
return jtu.tree_map(lambda _: False, x)
AdamW的特殊性
AdamW优化器与其他优化器的主要区别在于:
- 权重衰减与梯度更新分离处理
- 需要当前参数值计算权重衰减项
- 掩码应用在权重衰减阶段而非梯度计算阶段
总结
Optax库通过最近的更新完善了对PyTree结构掩码的支持,使开发者能够更灵活地控制权重衰减的应用范围。在使用AdamW优化器时,开发者需要注意其特殊的参数传递要求,并合理设计掩码函数来实现精细化的权重衰减控制。这一改进特别有利于基于Equinox构建的复杂模型训练。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
25