Optax项目中AdamW优化器的参数掩码技术解析
2025-07-07 00:09:50作者:邬祺芯Juliet
背景介绍
在深度学习模型训练过程中,权重衰减(Weight Decay)是一种常用的正则化技术,用于防止模型过拟合。Optax作为JAX生态系统中的优化器库,提供了AdamW优化器的实现,该优化器将权重衰减与Adam优化器分离处理。然而,在实际应用中,我们经常需要对模型参数进行选择性掩码,只对特定参数应用权重衰减。
问题本质
在使用Equinox构建的模型中,开发者希望实现以下功能:
- 对线性层(eqx.nn.Linear)的所有参数应用权重衰减
- 对层归一化(eqx.nn.LayerNorm)的偏置(bias)应用权重衰减
- 对其他参数不应用权重衰减
技术挑战
直接使用Optax的mask参数时遇到了两个主要问题:
- 当mask是PyTree结构时,Optax内部处理会出现异常
- 使用AdamW优化器时,update函数需要显式传入当前参数值,这与Adam等优化器的使用方式不同
解决方案演进
临时解决方案
在Optax修复PR合并前,可以通过修改_src/wrappers.py
中的两处代码临时解决问题:
- 将
mask_tree = mask(params) if callable(mask) else mask
简化为mask_tree = mask
- 同样简化另一处mask处理逻辑
官方修复
Optax项目通过PR #1015彻底解决了这个问题,主要改进包括:
- 正确处理PyTree结构的mask参数
- 保持mask功能在各种优化器中的一致性
最佳实践
使用AdamW优化器时,需要注意以下关键点:
- 参数传递:AdamW的update函数需要显式传入当前参数值
updates, opt_state = optimizer.update(grads, opt_state, params)
- 掩码构建:建议使用Equinox的过滤功能构建掩码
params = eqx.filter(model, eqx.is_array)
mask = jtu.tree_map(set_mask, params, is_leaf=is_layer)
- 优化器初始化:正确初始化带掩码的优化器
optim = optax.adamw(learning_rate=1e-4, mask=mask)
opt_state = optim.init(params)
技术细节解析
掩码函数设计
有效的掩码函数应该能够:
- 识别不同类型的层结构
- 对不同参数应用不同的掩码策略
- 保持与模型参数相同的PyTree结构
示例掩码函数:
def set_mask(x):
if isinstance(x, eqx.nn.Linear):
return jtu.tree_map(lambda _: True, x)
elif isinstance(x, eqx.nn.LayerNorm):
mask = jtu.tree_map(lambda _: False, x)
mask = eqx.tree_at(lambda m: m.bias, mask, True)
return mask
else:
return jtu.tree_map(lambda _: False, x)
AdamW的特殊性
AdamW优化器与其他优化器的主要区别在于:
- 权重衰减与梯度更新分离处理
- 需要当前参数值计算权重衰减项
- 掩码应用在权重衰减阶段而非梯度计算阶段
总结
Optax库通过最近的更新完善了对PyTree结构掩码的支持,使开发者能够更灵活地控制权重衰减的应用范围。在使用AdamW优化器时,开发者需要注意其特殊的参数传递要求,并合理设计掩码函数来实现精细化的权重衰减控制。这一改进特别有利于基于Equinox构建的复杂模型训练。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133