Optax优化器库中RMSProp与AdamW的算法优化分析
2025-07-07 07:26:00作者:幸俭卉
在深度学习优化器领域,Google DeepMind开发的Optax库近期针对RMSProp和AdamW优化器进行了两项重要改进。这些改进不仅提升了算法效率,还优化了内存使用,体现了深度学习优化技术的最新进展。
RMSProp与Adam优化器的统一缩放策略
传统RMSProp优化器与Adam优化器在参数更新时采用不同的缩放策略。RMSProp使用平方梯度的指数移动平均(EMA)进行参数缩放,而Adam在此基础上增加了动量项。最新改进允许RMSProp采用与Adam相同的缩放方式(去除动量项),这一变化带来了两个显著优势:
- 算法一致性:使RMSProp能够作为Adam的特例存在,便于算法分析和比较
- 实现简化:统一了两种优化器的底层实现,减少了代码冗余
这种改进特别适合那些希望使用Adam式缩放但又不需要动量的应用场景,为研究人员提供了更灵活的选择。
Schedule-Free AdamW的内存优化实现
针对流行的AdamW优化器,Optax团队做出了重要的内存优化。传统实现需要为每个参数维护多个状态变量,消耗较多内存。新方案通过以下方式优化:
- 直接复用RMSProp的核心计算逻辑
- 消除冗余的状态存储
- 保持算法数学等价性的前提下减少内存占用
这种优化对于大规模模型训练尤为重要,可以显著降低显存/内存需求,使得在有限硬件资源下训练更大模型成为可能。
技术实现细节
在底层实现上,这些改进主要涉及:
- 参数更新公式的重构,确保数学等价性
- 状态管理机制的优化,减少不必要的中间变量存储
- 梯度缩放策略的抽象和复用
这些改动不仅提升了算法效率,还保持了API的向后兼容性,用户无需修改现有代码即可受益于这些优化。
实际应用价值
对于深度学习从业者,这些改进意味着:
- 更高效的超参数搜索:可以更便捷地在RMSProp和Adam风格优化器之间切换比较
- 资源受限场景的优势:内存优化使得在消费级硬件上训练模型更加可行
- 研究复现的便利性:统一实现减少了不同优化器之间的实现差异
这些优化体现了Optax作为现代优化器库的设计理念:在保持算法灵活性的同时,追求更高的计算效率和资源利用率。对于关注优化算法性能和内存占用的研究人员和工程师,这些改进值得关注和采用。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
238
2.36 K
仓颉编程语言运行时与标准库。
Cangjie
122
96
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
85
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
77
110
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
998
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
115
LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
26