Argo Rollouts中ProgressDeadlineExceeded状态问题的分析与解决
在Kubernetes应用部署过程中,Argo Rollouts作为一款强大的渐进式交付工具,为应用发布提供了蓝绿部署、金丝雀发布等高级功能。然而,在实际生产环境中,我们可能会遇到一些意料之外的状态问题,特别是当与自动扩缩容组件如KEDA结合使用时。
问题现象
在某个生产环境中,运维团队设置了一个定时任务:每天22:30(KST)通过调整KEDA的minReplicaCount对关键服务进行扩容,以应对午夜时分的业务高峰;然后在次日02:00(KST)左右将Pod数量缩减回原始值。这个机制已经稳定运行了数月,但最近却出现了异常情况。
具体表现为:在缩容操作后约5分钟,Rollout资源的状态会转变为"degraded",并持续保持这种状态。检查Rollout状态时发现,虽然HPA已经正确地将副本数调整为5个,但Rollout的状态中HPAReplicas、availableReplicas、readyReplicas、replicas和updatedReplicas等字段仍然显示为扩容后的7个。这种不一致导致Rollout无法满足最小可用性要求,最终触发"Rollout does not have minimum availability"错误,进入ProgressDeadlineExceeded状态。
问题根源
经过深入分析,这个问题源于Argo Rollouts控制器与Kubernetes ReplicaSet控制器之间的竞态条件。具体来说:
- 当HPA触发缩容时,它会修改ReplicaSet的期望副本数
- ReplicaSet控制器开始逐步终止多余的Pod
- 与此同时,Argo Rollouts控制器从自己的缓存中读取ReplicaSet信息
- 由于缓存同步延迟,Rollouts控制器可能获取到过时的ReplicaSet数据
- 这种数据不一致导致Rollouts控制器错误地认为应该存在更多Pod
这种竞态条件在Argo Rollouts v1.7.2版本中表现得尤为明显,特别是在与KEDA这类动态扩缩容组件配合使用时。
解决方案
Argo Rollouts社区已经针对这个问题提出了修复方案,主要改进包括:
- 优化控制器对ReplicaSet状态的同步机制
- 减少缓存不一致导致的数据覆盖问题
- 增强对HPA变化的响应能力
这个修复已经合并到主分支,并计划包含在即将发布的v1.8-rc2版本中。对于生产环境中遇到此问题的用户,建议采取以下临时解决方案:
- 对受影响的Rollout资源执行重启操作
- 暂时调整ProgressDeadline时间,为状态同步留出更多时间
- 考虑回退到更稳定的版本(如v1.6.6)
最佳实践
为了避免类似问题,在使用Argo Rollouts与自动扩缩容组件时,建议:
- 保持组件版本更新,及时应用修复补丁
- 为关键业务部署设置适当的监控和告警
- 在非高峰时段进行版本升级和变更测试
- 考虑在自动扩缩容操作前后增加状态检查步骤
- 为Rollout资源配置合理的progressDeadlineSeconds
通过理解这个问题背后的机制和解决方案,运维团队可以更好地管理基于Argo Rollouts的部署流程,确保应用发布的可靠性和稳定性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00