MaaAssistantArknights项目中自动编队功能低信赖干员识别问题分析
问题背景
在MaaAssistantArknights项目的v5.15.6版本中,开发团队对自动编队逻辑进行了调整。然而,这一调整引入了一个新的问题:当使用"补充低信赖干员"功能时,如果作业最后选中的干员不在第一屏显示范围内,系统无法正确选择到前面的低信赖干员,而是会错误地选择当前屏幕显示的非低信赖干员。
问题现象
用户报告在使用自动编队功能时,系统无法正确识别和选择低信赖干员。具体表现为:
- 当目标干员不在第一屏显示范围内时,系统无法滚动到正确位置进行选择
- 系统会错误地选择当前屏幕显示的非低信赖干员
- 在某些分辨率下,干员分类标签(如ALL、先锋、近卫等)的识别准确率显著下降
技术分析
经过开发团队深入调查,发现问题根源与以下因素相关:
-
分辨率适配问题:在1600×900等非标准分辨率下,干员分类标签的识别准确率明显降低。测试数据显示,在某些情况下,医疗ALL、先锋、近卫等标签的识别得分低于0.9,而正常情况下应在0.95以上。
-
图像识别阈值:系统对干员分类标签的识别采用了固定的相似度阈值,在非标准分辨率下,由于图像缩放导致特征变化,原有阈值不再适用。
-
滚动逻辑缺陷:当需要选择不在当前屏幕范围内的干员时,系统的滚动和定位逻辑存在缺陷,无法准确定位到目标干员位置。
解决方案
开发团队针对该问题实施了以下修复措施:
-
优化图像识别模板:更新了BattleQuickFormationExpandRole模板文件,提高了在不同分辨率下的识别稳定性。
-
调整识别算法:对干员分类标签的识别算法进行了优化,使其能够更好地适应不同分辨率的显示环境。
-
增强滚动逻辑:改进了屏幕滚动和定位逻辑,确保系统能够准确定位到不在当前显示范围内的目标干员。
用户建议
对于遇到类似问题的用户,建议采取以下措施:
- 确保使用最新版本的MaaAssistantArknights
- 检查并更新resource/template目录下的模板文件
- 如可能,尝试使用标准分辨率(如720p或1080p)运行模拟器
- 在maa根目录创建DEBUG.txt文件以获取更详细的运行日志
总结
此次问题凸显了自动化工具在不同显示环境下稳定性的重要性。MaaAssistantArknights开发团队通过优化图像识别算法和改进操作逻辑,有效解决了低信赖干员识别问题,进一步提升了工具的可靠性和用户体验。这也为类似自动化工具的开发提供了宝贵的经验:必须充分考虑各种运行环境的差异,并建立完善的适配机制。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00