Fury项目中集合元素为抽象类的序列化问题解析
2025-06-25 11:27:33作者:裴锟轩Denise
问题背景
在Apache Fury项目中,当使用Java代码生成模式(codegen)时,如果集合(List)中包含抽象类元素,会出现序列化/反序列化错误。具体表现为:当集合元素类型为抽象类时,生成的代码会错误地假设所有元素都是同一具体类型,导致反序列化失败。
问题复现
考虑以下测试用例:
abstract static class Foo {
private int f1;
}
static class Foo1 extends Foo {}
static class CollectionAbstractTest {
private List<Foo> foos;
}
@Test
public void testCollectionAbstractCodegen() {
Fury fury = Fury.builder()
.withCodegen(true)
.requireClassRegistration(false)
.build();
CollectionAbstractTest test = new CollectionAbstractTest();
test.foos = new ArrayList<>(ImmutableList.of(new Foo1(), new Foo1()));
CollectionAbstractTest object = serDe(fury, test);
}
问题分析
问题根源在于Fury的代码生成逻辑。当处理集合元素时,Fury会生成一个sameElementClassWrite方法,该方法假设集合中所有元素都是同一具体类型。对于抽象类元素,这种假设是不成立的,因为抽象类本身不能被实例化,必须通过其具体子类来实现。
生成的错误代码如下:
private void sameElementClassWrite(int value0, MemoryBuffer memoryBuffer1,
java.util.List list2, boolean value1) {
for (int i = 0; i < value0; i+=1) {
Object object = list2.get(i);
if (value1) {
if ((object == null)) {
memoryBuffer1.writeByte(((byte)-3));
} else {
memoryBuffer1.writeByte(((byte)0));
fooClassInfoHolder.getSerializer().write(memoryBuffer1, object);
}
} else {
fooClassInfoHolder.getSerializer().write(memoryBuffer1, object);
}
}
}
解决方案
Fury开发团队通过两个阶段解决了这个问题:
-
初步修复:尝试通过修改内联表达式(Inlineable Expression)实现,但发现存在一些问题。
-
最终修复:采用更低层次的修复方式,从根本上解决了抽象类元素在集合中的序列化问题。新方案会正确处理抽象类元素,不再假设所有元素都是同一具体类型。
性能考虑
原始实现中,Fury需要遍历整个集合来检查所有元素是否为同一类型。这在大多数情况下是不必要的,因为集合通常只包含单一类型元素(除非是类似Set<Object>这样的宽泛类型)。优化后的实现可以减少这种不必要的数组遍历,提高性能。
总结
这个问题展示了在序列化框架中处理抽象类型时的复杂性。Fury通过代码生成优化性能的同时,也需要确保正确处理各种类型场景,包括抽象类和接口。开发团队的低层次修复方案既解决了当前问题,也为未来类似情况提供了更好的扩展性。
对于使用Fury的开发者来说,这个修复意味着可以安全地在集合中使用抽象类元素,而不用担心序列化/反序列化失败的问题,同时还能享受代码生成带来的性能优势。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
646
149
Ascend Extension for PyTorch
Python
207
220
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
286
React Native鸿蒙化仓库
JavaScript
250
318
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873