Apache Fury 集合中抽象类序列化问题的分析与解决
2025-06-25 08:11:51作者:何将鹤
问题背景
Apache Fury 是一个高性能的序列化框架,其 Java 实现支持通过代码生成(codegen)来优化序列化性能。在最新版本中,开发者发现当集合中包含抽象类元素时,使用代码生成模式会导致反序列化失败。
问题现象
当定义如下数据结构时:
abstract class Foo {
private int f1;
}
class Foo1 extends Foo {}
class CollectionAbstractTest {
private List<Foo> foos;
}
使用 Fury 的代码生成模式序列化包含 Foo1 实例的 CollectionAbstractTest 对象后,反序列化时会抛出异常。这是因为生成的代码假设集合中所有元素都是相同具体类型,而实际上集合中存储的是抽象类的子类实例。
技术分析
Fury 的代码生成器在处理集合时会生成 sameElementClassWrite 方法,该方法假设集合中所有元素都是相同类型,直接使用该类型的序列化器进行写入。对于抽象类的情况,这种假设不成立,因为实际存储的是子类实例。
生成的代码大致如下:
private void sameElementClassWrite(...) {
// 直接使用抽象类的序列化器
fooClassInfoHolder.getSerializer().write(memoryBuffer1, object);
}
这种实现存在两个问题:
- 无法正确处理抽象类的子类实例
- 在反序列化时无法恢复实际的子类类型信息
解决方案
修复方案的核心思想是:当处理可能包含多态类型的集合时,不能假设元素类型完全相同。具体实现包括:
- 对于抽象类或接口类型的集合元素,禁用"相同元素类型"优化
- 为每个元素单独处理类型信息,就像处理普通多态对象一样
- 在序列化时写入完整的类型信息
- 在反序列化时正确读取并重建对象层次结构
修复后的代码会确保:
- 抽象类集合元素能够正确序列化和反序列化
- 保持类型安全性
- 在可能的情况下仍然进行性能优化
性能考量
虽然这种修复可能会对包含抽象类集合的序列化性能产生轻微影响,但这是保证正确性所必需的。对于不包含抽象类的集合,原有的优化仍然有效。
最佳实践
开发者在使用 Fury 时应注意:
- 尽量避免在性能关键路径上使用抽象类集合
- 如果必须使用,考虑使用具体类型的集合
- 对于已知的具体子类集合,可以使用
@Fury.annotation.Generated提供更多类型信息
总结
这个问题展示了在序列化框架中处理类型系统复杂性时的挑战。Apache Fury 通过灵活的代码生成策略,既保证了大多数情况下的高性能,又正确处理了面向对象编程中的多态场景。这次修复使得框架对 Java 类型系统的支持更加完善,特别是对抽象类和接口的处理更加健壮。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
211
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319