Mill项目中TestBaseModule模块依赖传递问题的技术解析
概述
在Mill构建工具的0.12.10版本中,开发者在使用TestBaseModule进行插件测试时遇到了一个关于依赖传递的典型问题。当两个ScalaModule之间存在moduleDeps关系时,ivyDeps无法正确地从依赖模块传递到测试模块,这给插件开发者的测试工作带来了困扰。
问题现象
具体表现为:假设我们有一个foo模块和一个bar模块,其中bar通过moduleDeps依赖于foo。foo模块中定义了ivyDeps依赖(如smithy4s-aws-kernel),但在bar模块中编译时却无法解析这些传递依赖,导致编译失败。
有趣的是,在Mill 0.13.0-M1版本中这个问题已经被修复,但0.12版本的用户仍然受此问题困扰。更奇怪的是,如果在测试代码中先打印transitiveIvyDeps,问题就会神奇地消失,这表明这是一个与依赖解析顺序相关的bug。
技术背景
TestBaseModule是Mill中专门用于测试的基础模块,按照设计原则,它应该是测试模块树的根节点,不应该有外部依赖。这种设计是为了保持测试环境的隔离性和可重复性。
在Mill 0.12.10中,TestBaseModule与其他模块的依赖关系处理存在缺陷,导致依赖无法正确传递。这主要是因为TestBaseModule的依赖解析机制与其他普通模块不同,没有正确处理跨模块的依赖传递。
解决方案
根据Mill核心开发者的建议,正确的做法是将所有测试模块组织在一个TestBaseModule内部,而不是让多个TestBaseModule相互依赖。这样可以确保依赖关系的正确传递和解析。
例如:
object base extends TestBaseModule {
object foo extends ScalaModule {
// 配置...
}
object bar extends ScalaModule {
override def moduleDeps = Seq(foo)
// 配置...
}
lazy val millDiscover = Discover[this.type]
}
这种组织方式确保了所有测试模块都在同一个TestBaseModule上下文中,依赖关系能够正确传递。
版本差异分析
在Mill 0.13.0-M1中,这个问题被修复了,使得TestBaseModule之间的依赖传递能够正常工作。但考虑到向后兼容性和设计初衷,即使在0.13版本中,也不推荐让TestBaseModule相互依赖。
最佳实践建议
- 单一TestBaseModule原则:所有测试模块应该组织在一个TestBaseModule内部
- 模块化设计:在TestBaseModule内部可以自由定义多个子模块和它们之间的依赖关系
- 避免跨TestBaseModule依赖:即使在高版本中能够工作,也不推荐这种做法
- 明确依赖边界:测试模块的依赖应该自包含,减少对外部环境的依赖
总结
这个问题揭示了测试模块设计中的一个重要原则:测试环境应该尽可能独立和自包含。通过将相关测试模块组织在同一个TestBaseModule下,不仅可以避免依赖传递问题,还能提高测试的可维护性和可靠性。对于Mill插件开发者来说,理解这一设计理念比单纯依赖特定版本的修复更为重要。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00