Mill项目中TestBaseModule模块依赖传递问题的技术解析
概述
在Mill构建工具的0.12.10版本中,开发者在使用TestBaseModule进行插件测试时遇到了一个关于依赖传递的典型问题。当两个ScalaModule之间存在moduleDeps关系时,ivyDeps无法正确地从依赖模块传递到测试模块,这给插件开发者的测试工作带来了困扰。
问题现象
具体表现为:假设我们有一个foo模块和一个bar模块,其中bar通过moduleDeps依赖于foo。foo模块中定义了ivyDeps依赖(如smithy4s-aws-kernel),但在bar模块中编译时却无法解析这些传递依赖,导致编译失败。
有趣的是,在Mill 0.13.0-M1版本中这个问题已经被修复,但0.12版本的用户仍然受此问题困扰。更奇怪的是,如果在测试代码中先打印transitiveIvyDeps,问题就会神奇地消失,这表明这是一个与依赖解析顺序相关的bug。
技术背景
TestBaseModule是Mill中专门用于测试的基础模块,按照设计原则,它应该是测试模块树的根节点,不应该有外部依赖。这种设计是为了保持测试环境的隔离性和可重复性。
在Mill 0.12.10中,TestBaseModule与其他模块的依赖关系处理存在缺陷,导致依赖无法正确传递。这主要是因为TestBaseModule的依赖解析机制与其他普通模块不同,没有正确处理跨模块的依赖传递。
解决方案
根据Mill核心开发者的建议,正确的做法是将所有测试模块组织在一个TestBaseModule内部,而不是让多个TestBaseModule相互依赖。这样可以确保依赖关系的正确传递和解析。
例如:
object base extends TestBaseModule {
object foo extends ScalaModule {
// 配置...
}
object bar extends ScalaModule {
override def moduleDeps = Seq(foo)
// 配置...
}
lazy val millDiscover = Discover[this.type]
}
这种组织方式确保了所有测试模块都在同一个TestBaseModule上下文中,依赖关系能够正确传递。
版本差异分析
在Mill 0.13.0-M1中,这个问题被修复了,使得TestBaseModule之间的依赖传递能够正常工作。但考虑到向后兼容性和设计初衷,即使在0.13版本中,也不推荐让TestBaseModule相互依赖。
最佳实践建议
- 单一TestBaseModule原则:所有测试模块应该组织在一个TestBaseModule内部
- 模块化设计:在TestBaseModule内部可以自由定义多个子模块和它们之间的依赖关系
- 避免跨TestBaseModule依赖:即使在高版本中能够工作,也不推荐这种做法
- 明确依赖边界:测试模块的依赖应该自包含,减少对外部环境的依赖
总结
这个问题揭示了测试模块设计中的一个重要原则:测试环境应该尽可能独立和自包含。通过将相关测试模块组织在同一个TestBaseModule下,不仅可以避免依赖传递问题,还能提高测试的可维护性和可靠性。对于Mill插件开发者来说,理解这一设计理念比单纯依赖特定版本的修复更为重要。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00