Mill项目中TestBaseModule模块依赖传递问题的技术解析
概述
在Mill构建工具的0.12.10版本中,开发者在使用TestBaseModule进行插件测试时遇到了一个关于依赖传递的典型问题。当两个ScalaModule之间存在moduleDeps关系时,ivyDeps无法正确地从依赖模块传递到测试模块,这给插件开发者的测试工作带来了困扰。
问题现象
具体表现为:假设我们有一个foo模块和一个bar模块,其中bar通过moduleDeps依赖于foo。foo模块中定义了ivyDeps依赖(如smithy4s-aws-kernel),但在bar模块中编译时却无法解析这些传递依赖,导致编译失败。
有趣的是,在Mill 0.13.0-M1版本中这个问题已经被修复,但0.12版本的用户仍然受此问题困扰。更奇怪的是,如果在测试代码中先打印transitiveIvyDeps,问题就会神奇地消失,这表明这是一个与依赖解析顺序相关的bug。
技术背景
TestBaseModule是Mill中专门用于测试的基础模块,按照设计原则,它应该是测试模块树的根节点,不应该有外部依赖。这种设计是为了保持测试环境的隔离性和可重复性。
在Mill 0.12.10中,TestBaseModule与其他模块的依赖关系处理存在缺陷,导致依赖无法正确传递。这主要是因为TestBaseModule的依赖解析机制与其他普通模块不同,没有正确处理跨模块的依赖传递。
解决方案
根据Mill核心开发者的建议,正确的做法是将所有测试模块组织在一个TestBaseModule内部,而不是让多个TestBaseModule相互依赖。这样可以确保依赖关系的正确传递和解析。
例如:
object base extends TestBaseModule {
object foo extends ScalaModule {
// 配置...
}
object bar extends ScalaModule {
override def moduleDeps = Seq(foo)
// 配置...
}
lazy val millDiscover = Discover[this.type]
}
这种组织方式确保了所有测试模块都在同一个TestBaseModule上下文中,依赖关系能够正确传递。
版本差异分析
在Mill 0.13.0-M1中,这个问题被修复了,使得TestBaseModule之间的依赖传递能够正常工作。但考虑到向后兼容性和设计初衷,即使在0.13版本中,也不推荐让TestBaseModule相互依赖。
最佳实践建议
- 单一TestBaseModule原则:所有测试模块应该组织在一个TestBaseModule内部
- 模块化设计:在TestBaseModule内部可以自由定义多个子模块和它们之间的依赖关系
- 避免跨TestBaseModule依赖:即使在高版本中能够工作,也不推荐这种做法
- 明确依赖边界:测试模块的依赖应该自包含,减少对外部环境的依赖
总结
这个问题揭示了测试模块设计中的一个重要原则:测试环境应该尽可能独立和自包含。通过将相关测试模块组织在同一个TestBaseModule下,不仅可以避免依赖传递问题,还能提高测试的可维护性和可靠性。对于Mill插件开发者来说,理解这一设计理念比单纯依赖特定版本的修复更为重要。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0209PublicCMS
266万多行代码修改 持续迭代9年 现代化java cms完整开源,轻松支撑千万数据、千万PV;支持静态化,服务器端包含,多级缓存,全文搜索复杂搜索,后台支持手机操作; 目前已经拥有全球0.0005%(w3techs提供的数据)的用户,语言支持中、繁、日、英;是一个已走向海外的成熟CMS产品Java00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。00- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile05
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









