使用PyKAN预测混凝土抗压强度的技术实践
2025-05-14 15:45:56作者:温艾琴Wonderful
项目背景
PyKAN是一个基于Kolmogorov-Arnold网络(KAN)的Python实现,该项目提供了一种新颖的神经网络架构,特别适用于复杂非线性关系的建模。本文将分享如何使用PyKAN构建混凝土抗压强度预测模型的技术实践。
数据准备与预处理
在混凝土材料研究中,抗压强度是一个关键性能指标。我们使用的数据集包含以下特征列:
- 水灰比(WCM_ratio)
- 水泥含量(C_Content)
- 砂含量(Sand_Content)
- 粗骨料含量(CA_Content)
- 水泥类型含量(Cement_Content)
目标变量为28天抗压强度(day28_Compressive_Strength)。数据预处理阶段需要特别注意将输入输出数据正确转换为PyTorch张量格式。
模型构建
我们使用以下配置初始化KAN模型:
model = KAN(width=[5,10,1], grid=500, k=3, seed=0)
其中:
- width=[5,10,1]表示输入层5个节点,隐藏层10个节点,输出层1个节点
- grid=500设置B样条曲线的网格点数
- k=3表示使用三次B样条
- seed=0确保结果可复现
训练过程
模型训练采用LBFGS优化器,这是一种准牛顿方法,特别适合中小规模问题的优化。训练参数设置如下:
results = model.fit(dataset, opt="LBFGS", steps=50, lamb=0.01, lamb_entropy=10)
其中:
- steps=50设置训练迭代次数
- lamb=0.01控制正则化强度
- lamb_entropy=10调整熵正则化项
常见问题与解决方案
在实际应用中,开发者可能会遇到预测结果不随输入变化的问题。这通常是由于数据预处理不当导致的,特别是输出数据的维度处理。正确的做法是:
training_outputs = torch.tensor(extracted_data, dtype=torch.float32).unsqueeze(1)
关键点:
- 必须确保数据类型为torch.float32
- unsqueeze(1)确保输出维度为(N,1)而非(N,)
- 输入输出张量形状要匹配模型预期
模型解释与可视化
PyKAN提供了强大的模型解释工具:
model.plot(beta=1000)
可视化可以展示网络中各节点的激活函数形态,帮助理解模型学习到的特征变换。
符号公式提取功能可以将学习到的复杂关系转化为数学表达式:
lib = ['x','x^2','x^3','x^4','exp','log','sqrt','tanh','sin','tan','abs']
model.auto_symbolic(lib=lib)
formula = model.symbolic_formula()[0][0]
性能评估
训练过程中需要监控以下指标:
- 训练损失(train_loss)
- 测试损失(test_loss)
- 正则化项(reg)
典型性能表现:
| train_loss: 5.38e+00 | test_loss: 5.38e+00 | reg: 8.40e+01 |
实际应用
完成训练后,模型可用于预测新样本的抗压强度。通过符号公式可以直接进行数学计算:
variable_values = {
'x_1': WCM_ratio,
'x_2': C_Content,
'x_3': Sand_Content,
'x_4': CA_Content,
'x_5': Cement_Content
}
for var, val in variable_values.items():
formula = formula.replace(var, str(val))
result = eval(formula)
总结
PyKAN为材料性能预测提供了一种新颖的建模方法。通过正确的数据预处理、合理的模型配置和充分的训练,可以构建出准确预测混凝土抗压强度的模型。实践中需特别注意张量维度的匹配和训练参数的调整,以获得最佳性能。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
25