使用PyKAN预测混凝土抗压强度的技术实践
2025-05-14 16:52:21作者:温艾琴Wonderful
项目背景
PyKAN是一个基于Kolmogorov-Arnold网络(KAN)的Python实现,该项目提供了一种新颖的神经网络架构,特别适用于复杂非线性关系的建模。本文将分享如何使用PyKAN构建混凝土抗压强度预测模型的技术实践。
数据准备与预处理
在混凝土材料研究中,抗压强度是一个关键性能指标。我们使用的数据集包含以下特征列:
- 水灰比(WCM_ratio)
- 水泥含量(C_Content)
- 砂含量(Sand_Content)
- 粗骨料含量(CA_Content)
- 水泥类型含量(Cement_Content)
目标变量为28天抗压强度(day28_Compressive_Strength)。数据预处理阶段需要特别注意将输入输出数据正确转换为PyTorch张量格式。
模型构建
我们使用以下配置初始化KAN模型:
model = KAN(width=[5,10,1], grid=500, k=3, seed=0)
其中:
- width=[5,10,1]表示输入层5个节点,隐藏层10个节点,输出层1个节点
- grid=500设置B样条曲线的网格点数
- k=3表示使用三次B样条
- seed=0确保结果可复现
训练过程
模型训练采用LBFGS优化器,这是一种准牛顿方法,特别适合中小规模问题的优化。训练参数设置如下:
results = model.fit(dataset, opt="LBFGS", steps=50, lamb=0.01, lamb_entropy=10)
其中:
- steps=50设置训练迭代次数
- lamb=0.01控制正则化强度
- lamb_entropy=10调整熵正则化项
常见问题与解决方案
在实际应用中,开发者可能会遇到预测结果不随输入变化的问题。这通常是由于数据预处理不当导致的,特别是输出数据的维度处理。正确的做法是:
training_outputs = torch.tensor(extracted_data, dtype=torch.float32).unsqueeze(1)
关键点:
- 必须确保数据类型为torch.float32
- unsqueeze(1)确保输出维度为(N,1)而非(N,)
- 输入输出张量形状要匹配模型预期
模型解释与可视化
PyKAN提供了强大的模型解释工具:
model.plot(beta=1000)
可视化可以展示网络中各节点的激活函数形态,帮助理解模型学习到的特征变换。
符号公式提取功能可以将学习到的复杂关系转化为数学表达式:
lib = ['x','x^2','x^3','x^4','exp','log','sqrt','tanh','sin','tan','abs']
model.auto_symbolic(lib=lib)
formula = model.symbolic_formula()[0][0]
性能评估
训练过程中需要监控以下指标:
- 训练损失(train_loss)
- 测试损失(test_loss)
- 正则化项(reg)
典型性能表现:
| train_loss: 5.38e+00 | test_loss: 5.38e+00 | reg: 8.40e+01 |
实际应用
完成训练后,模型可用于预测新样本的抗压强度。通过符号公式可以直接进行数学计算:
variable_values = {
'x_1': WCM_ratio,
'x_2': C_Content,
'x_3': Sand_Content,
'x_4': CA_Content,
'x_5': Cement_Content
}
for var, val in variable_values.items():
formula = formula.replace(var, str(val))
result = eval(formula)
总结
PyKAN为材料性能预测提供了一种新颖的建模方法。通过正确的数据预处理、合理的模型配置和充分的训练,可以构建出准确预测混凝土抗压强度的模型。实践中需特别注意张量维度的匹配和训练参数的调整,以获得最佳性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1