使用PyKAN预测混凝土抗压强度的技术实践
2025-05-14 22:07:00作者:温艾琴Wonderful
项目背景
PyKAN是一个基于Kolmogorov-Arnold网络(KAN)的Python实现,该项目提供了一种新颖的神经网络架构,特别适用于复杂非线性关系的建模。本文将分享如何使用PyKAN构建混凝土抗压强度预测模型的技术实践。
数据准备与预处理
在混凝土材料研究中,抗压强度是一个关键性能指标。我们使用的数据集包含以下特征列:
- 水灰比(WCM_ratio)
- 水泥含量(C_Content)
- 砂含量(Sand_Content)
- 粗骨料含量(CA_Content)
- 水泥类型含量(Cement_Content)
目标变量为28天抗压强度(day28_Compressive_Strength)。数据预处理阶段需要特别注意将输入输出数据正确转换为PyTorch张量格式。
模型构建
我们使用以下配置初始化KAN模型:
model = KAN(width=[5,10,1], grid=500, k=3, seed=0)
其中:
- width=[5,10,1]表示输入层5个节点,隐藏层10个节点,输出层1个节点
- grid=500设置B样条曲线的网格点数
- k=3表示使用三次B样条
- seed=0确保结果可复现
训练过程
模型训练采用LBFGS优化器,这是一种准牛顿方法,特别适合中小规模问题的优化。训练参数设置如下:
results = model.fit(dataset, opt="LBFGS", steps=50, lamb=0.01, lamb_entropy=10)
其中:
- steps=50设置训练迭代次数
- lamb=0.01控制正则化强度
- lamb_entropy=10调整熵正则化项
常见问题与解决方案
在实际应用中,开发者可能会遇到预测结果不随输入变化的问题。这通常是由于数据预处理不当导致的,特别是输出数据的维度处理。正确的做法是:
training_outputs = torch.tensor(extracted_data, dtype=torch.float32).unsqueeze(1)
关键点:
- 必须确保数据类型为torch.float32
- unsqueeze(1)确保输出维度为(N,1)而非(N,)
- 输入输出张量形状要匹配模型预期
模型解释与可视化
PyKAN提供了强大的模型解释工具:
model.plot(beta=1000)
可视化可以展示网络中各节点的激活函数形态,帮助理解模型学习到的特征变换。
符号公式提取功能可以将学习到的复杂关系转化为数学表达式:
lib = ['x','x^2','x^3','x^4','exp','log','sqrt','tanh','sin','tan','abs']
model.auto_symbolic(lib=lib)
formula = model.symbolic_formula()[0][0]
性能评估
训练过程中需要监控以下指标:
- 训练损失(train_loss)
- 测试损失(test_loss)
- 正则化项(reg)
典型性能表现:
| train_loss: 5.38e+00 | test_loss: 5.38e+00 | reg: 8.40e+01 |
实际应用
完成训练后,模型可用于预测新样本的抗压强度。通过符号公式可以直接进行数学计算:
variable_values = {
'x_1': WCM_ratio,
'x_2': C_Content,
'x_3': Sand_Content,
'x_4': CA_Content,
'x_5': Cement_Content
}
for var, val in variable_values.items():
formula = formula.replace(var, str(val))
result = eval(formula)
总结
PyKAN为材料性能预测提供了一种新颖的建模方法。通过正确的数据预处理、合理的模型配置和充分的训练,可以构建出准确预测混凝土抗压强度的模型。实践中需特别注意张量维度的匹配和训练参数的调整,以获得最佳性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
432
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
351
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
689
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
79
37
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
671