使用PyKAN预测混凝土抗压强度的技术实践
2025-05-14 16:52:21作者:温艾琴Wonderful
项目背景
PyKAN是一个基于Kolmogorov-Arnold网络(KAN)的Python实现,该项目提供了一种新颖的神经网络架构,特别适用于复杂非线性关系的建模。本文将分享如何使用PyKAN构建混凝土抗压强度预测模型的技术实践。
数据准备与预处理
在混凝土材料研究中,抗压强度是一个关键性能指标。我们使用的数据集包含以下特征列:
- 水灰比(WCM_ratio)
- 水泥含量(C_Content)
- 砂含量(Sand_Content)
- 粗骨料含量(CA_Content)
- 水泥类型含量(Cement_Content)
目标变量为28天抗压强度(day28_Compressive_Strength)。数据预处理阶段需要特别注意将输入输出数据正确转换为PyTorch张量格式。
模型构建
我们使用以下配置初始化KAN模型:
model = KAN(width=[5,10,1], grid=500, k=3, seed=0)
其中:
- width=[5,10,1]表示输入层5个节点,隐藏层10个节点,输出层1个节点
- grid=500设置B样条曲线的网格点数
- k=3表示使用三次B样条
- seed=0确保结果可复现
训练过程
模型训练采用LBFGS优化器,这是一种准牛顿方法,特别适合中小规模问题的优化。训练参数设置如下:
results = model.fit(dataset, opt="LBFGS", steps=50, lamb=0.01, lamb_entropy=10)
其中:
- steps=50设置训练迭代次数
- lamb=0.01控制正则化强度
- lamb_entropy=10调整熵正则化项
常见问题与解决方案
在实际应用中,开发者可能会遇到预测结果不随输入变化的问题。这通常是由于数据预处理不当导致的,特别是输出数据的维度处理。正确的做法是:
training_outputs = torch.tensor(extracted_data, dtype=torch.float32).unsqueeze(1)
关键点:
- 必须确保数据类型为torch.float32
- unsqueeze(1)确保输出维度为(N,1)而非(N,)
- 输入输出张量形状要匹配模型预期
模型解释与可视化
PyKAN提供了强大的模型解释工具:
model.plot(beta=1000)
可视化可以展示网络中各节点的激活函数形态,帮助理解模型学习到的特征变换。
符号公式提取功能可以将学习到的复杂关系转化为数学表达式:
lib = ['x','x^2','x^3','x^4','exp','log','sqrt','tanh','sin','tan','abs']
model.auto_symbolic(lib=lib)
formula = model.symbolic_formula()[0][0]
性能评估
训练过程中需要监控以下指标:
- 训练损失(train_loss)
- 测试损失(test_loss)
- 正则化项(reg)
典型性能表现:
| train_loss: 5.38e+00 | test_loss: 5.38e+00 | reg: 8.40e+01 |
实际应用
完成训练后,模型可用于预测新样本的抗压强度。通过符号公式可以直接进行数学计算:
variable_values = {
'x_1': WCM_ratio,
'x_2': C_Content,
'x_3': Sand_Content,
'x_4': CA_Content,
'x_5': Cement_Content
}
for var, val in variable_values.items():
formula = formula.replace(var, str(val))
result = eval(formula)
总结
PyKAN为材料性能预测提供了一种新颖的建模方法。通过正确的数据预处理、合理的模型配置和充分的训练,可以构建出准确预测混凝土抗压强度的模型。实践中需特别注意张量维度的匹配和训练参数的调整,以获得最佳性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896