Caldera项目中基于Agent执行顺序的能力调度策略分析
2025-06-04 11:55:53作者:幸俭卉
背景介绍
Caldera作为一款红队自动化平台,其核心功能之一是能够通过定义Adversary Profile来模拟攻击行为。在实际使用中,一个常见需求是希望某些能力(Ability)只在特定的Agent上执行,特别是在多阶段攻击场景中,当第一个Agent部署了第二个Agent后,希望后续能力只在第二个Agent上运行。
技术挑战
在多Agent环境中精确控制能力执行面临几个关键挑战:
- 默认行为限制:Caldera的默认规划器(Planner)会平等对待所有活跃Agent,无法自动区分新旧Agent
- 执行环境差异:不同Agent可能运行在不同操作系统或权限级别上
- 操作可见性:简单的过滤方法会导致大量"失败"操作出现在仪表盘中
解决方案比较
1. Agent分组方案
通过将初始Agent分配到特定组(group)中,可以限制操作仅在该组内执行。这种方法的优点是实现简单,但局限性在于无法反向操作(即无法仅在新Agent上执行)。
2. 基于事实(Fact)的条件执行
在部署新Agent的能力中添加主机名识别逻辑,生成特定事实(Fact),然后在后续能力中通过条件判断实现选择性执行:
if (#{victim.new.hostname} -eq hostname) {
# 执行核心逻辑
} else {
echo "not executed"
}
优缺点分析:
- 优点:实现相对简单,可扩展性强
- 缺点:会产生大量"未执行"的操作记录,影响仪表盘清晰度
3. 自定义规划器方案
开发自定义规划器是最灵活和优雅的解决方案。通过继承BasePlanner类并重写相关方法,可以实现:
- 跟踪Agent创建顺序
- 基于自定义逻辑过滤候选动作
- 精确控制能力分配
核心实现思路包括:
- 维护Agent注册时间记录
- 实现基于时间戳或顺序的过滤逻辑
- 集成到现有操作流程中
4. Agent终止方案
在部署新Agent后立即终止旧Agent的执行。这种方法简单直接,但牺牲了旧Agent的持续可用性,不适合需要保留多个活跃Agent的场景。
最佳实践建议
对于不同场景,建议采用不同策略:
- 简单测试环境:使用条件执行或Agent终止方案
- 复杂红队演练:开发自定义规划器
- 长期运营场景:结合分组和条件执行策略
技术实现细节
若选择开发自定义规划器,需要重点关注:
- Agent元数据管理:记录Agent注册时间、部署路径等信息
- 动作过滤算法:基于业务规则确定目标Agent
- 状态持久化:确保规划器状态在Caldera重启后仍能保持
以下是一个简化的规划器伪代码示例:
class SequentialAgentPlanner(BasePlanner):
def __init__(self):
self.agent_registry = {} # 记录Agent注册时间和顺序
def execute(self, operation):
# 过滤逻辑实现
for agent in operation.agents:
if agent.paw not in self.agent_registry:
self.agent_registry[agent.paw] = datetime.now()
# 仅选择最新注册的Agent执行
newest_agent = max(self.agent_registry.items(), key=lambda x: x[1])[0]
filtered_links = [l for l in operation.chain if l.paw == newest_agent]
# 应用过滤后的链路
operation.chain = filtered_links
总结
Caldera平台在多Agent能力调度方面提供了多种技术路径,从简单的条件执行到复杂的自定义规划器开发。选择合适方案需要权衡实现复杂度、维护成本和业务需求。对于企业级红队运营,投资开发自定义规划器通常能获得最佳的长期收益。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19