Caldera项目中基于Agent执行顺序的能力调度策略分析
2025-06-04 20:43:24作者:幸俭卉
背景介绍
Caldera作为一款红队自动化平台,其核心功能之一是能够通过定义Adversary Profile来模拟攻击行为。在实际使用中,一个常见需求是希望某些能力(Ability)只在特定的Agent上执行,特别是在多阶段攻击场景中,当第一个Agent部署了第二个Agent后,希望后续能力只在第二个Agent上运行。
技术挑战
在多Agent环境中精确控制能力执行面临几个关键挑战:
- 默认行为限制:Caldera的默认规划器(Planner)会平等对待所有活跃Agent,无法自动区分新旧Agent
 - 执行环境差异:不同Agent可能运行在不同操作系统或权限级别上
 - 操作可见性:简单的过滤方法会导致大量"失败"操作出现在仪表盘中
 
解决方案比较
1. Agent分组方案
通过将初始Agent分配到特定组(group)中,可以限制操作仅在该组内执行。这种方法的优点是实现简单,但局限性在于无法反向操作(即无法仅在新Agent上执行)。
2. 基于事实(Fact)的条件执行
在部署新Agent的能力中添加主机名识别逻辑,生成特定事实(Fact),然后在后续能力中通过条件判断实现选择性执行:
if (#{victim.new.hostname} -eq hostname) {
    # 执行核心逻辑
} else {
    echo "not executed"
}
优缺点分析:
- 优点:实现相对简单,可扩展性强
 - 缺点:会产生大量"未执行"的操作记录,影响仪表盘清晰度
 
3. 自定义规划器方案
开发自定义规划器是最灵活和优雅的解决方案。通过继承BasePlanner类并重写相关方法,可以实现:
- 跟踪Agent创建顺序
 - 基于自定义逻辑过滤候选动作
 - 精确控制能力分配
 
核心实现思路包括:
- 维护Agent注册时间记录
 - 实现基于时间戳或顺序的过滤逻辑
 - 集成到现有操作流程中
 
4. Agent终止方案
在部署新Agent后立即终止旧Agent的执行。这种方法简单直接,但牺牲了旧Agent的持续可用性,不适合需要保留多个活跃Agent的场景。
最佳实践建议
对于不同场景,建议采用不同策略:
- 简单测试环境:使用条件执行或Agent终止方案
 - 复杂红队演练:开发自定义规划器
 - 长期运营场景:结合分组和条件执行策略
 
技术实现细节
若选择开发自定义规划器,需要重点关注:
- Agent元数据管理:记录Agent注册时间、部署路径等信息
 - 动作过滤算法:基于业务规则确定目标Agent
 - 状态持久化:确保规划器状态在Caldera重启后仍能保持
 
以下是一个简化的规划器伪代码示例:
class SequentialAgentPlanner(BasePlanner):
    def __init__(self):
        self.agent_registry = {}  # 记录Agent注册时间和顺序
    
    def execute(self, operation):
        # 过滤逻辑实现
        for agent in operation.agents:
            if agent.paw not in self.agent_registry:
                self.agent_registry[agent.paw] = datetime.now()
        
        # 仅选择最新注册的Agent执行
        newest_agent = max(self.agent_registry.items(), key=lambda x: x[1])[0]
        filtered_links = [l for l in operation.chain if l.paw == newest_agent]
        
        # 应用过滤后的链路
        operation.chain = filtered_links
总结
Caldera平台在多Agent能力调度方面提供了多种技术路径,从简单的条件执行到复杂的自定义规划器开发。选择合适方案需要权衡实现复杂度、维护成本和业务需求。对于企业级红队运营,投资开发自定义规划器通常能获得最佳的长期收益。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445