MS-SWIFT项目中DPO训练时NLL_Loss为NaN问题的分析与解决
问题现象
在使用MS-SWIFT项目进行RLHF(强化学习人类反馈)训练时,特别是采用DPO(直接偏好优化)方法时,开发者遇到了NLL_Loss(负对数似然损失)持续为NaN的问题。该问题出现在使用RFT(强化微调)样本采样结合DPO训练的场景下,训练参数设置为:迭代次数4、epoch数1、batch_size为1、学习率1e-5,rpo_alpha采用默认值1.0。
问题排查过程
开发者首先检查了样本生成的数据格式,确认符合预期的['id', 'messages', 'rejected_response']结构。进一步调试发现,在训练过程中所有label值均为-100,这直接导致了NLL_Loss计算结果为NaN。
通过深入分析训练配置,发现开发者使用了以下关键参数组合:
- 模型类型:qwen2_5
- 最大长度:8192
- 训练类型:full(全参数训练)
- 精度:bfloat16
- 并行策略:deepspeed zero3
- 注意力实现:flash_attn
- 序列并行大小:4
根本原因
经过多次测试验证,最终确定问题根源在于sequence_parallel_size参数的设置。当该参数被移除后,NLL_Loss计算恢复正常。这表明在特定配置下,序列并行处理可能导致标签信息的异常处理或丢失。
此外,开发者还注意到之前为了解决另一个问题(模型推理中的张量设备不一致问题),修改了infer_engine.py文件中的代码,但确认这一修改与本问题无直接关联。
解决方案
针对这一问题,推荐采取以下解决方案:
-
移除sequence_parallel_size参数:在当前的训练配置下,暂时不使用序列并行可以避免NLL_Loss异常的问题。
-
数据完整性检查:虽然主要问题已定位到并行参数,但仍建议对训练数据进行全面检查,确保每条数据都包含完整的assistant响应部分,避免因数据缺失导致的其他潜在问题。
-
梯度监控:在训练初期加入梯度监控机制,可以更早发现数值不稳定的情况。
经验总结
这一案例为使用MS-SWIFT进行RLHF训练提供了宝贵经验:
-
并行策略的选择需要谨慎,特别是在结合特定模型架构和训练方法时,某些并行参数可能导致意外的数值计算问题。
-
在损失函数出现NaN时,除了检查数据质量外,还应该考虑训练框架层面的配置参数影响。
-
对于复杂的训练流程(如RFT+DPO),建议采用分阶段验证的方式,先确保基础训练正常,再逐步添加高级特性。
这一问题的解决为后续在MS-SWIFT框架下开展类似训练任务提供了重要参考,特别是在处理序列并行与损失计算交互时的注意事项。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00