MS-SWIFT项目中DPO训练时NLL_Loss为NaN问题的分析与解决
问题现象
在使用MS-SWIFT项目进行RLHF(强化学习人类反馈)训练时,特别是采用DPO(直接偏好优化)方法时,开发者遇到了NLL_Loss(负对数似然损失)持续为NaN的问题。该问题出现在使用RFT(强化微调)样本采样结合DPO训练的场景下,训练参数设置为:迭代次数4、epoch数1、batch_size为1、学习率1e-5,rpo_alpha采用默认值1.0。
问题排查过程
开发者首先检查了样本生成的数据格式,确认符合预期的['id', 'messages', 'rejected_response']结构。进一步调试发现,在训练过程中所有label值均为-100,这直接导致了NLL_Loss计算结果为NaN。
通过深入分析训练配置,发现开发者使用了以下关键参数组合:
- 模型类型:qwen2_5
- 最大长度:8192
- 训练类型:full(全参数训练)
- 精度:bfloat16
- 并行策略:deepspeed zero3
- 注意力实现:flash_attn
- 序列并行大小:4
根本原因
经过多次测试验证,最终确定问题根源在于sequence_parallel_size
参数的设置。当该参数被移除后,NLL_Loss计算恢复正常。这表明在特定配置下,序列并行处理可能导致标签信息的异常处理或丢失。
此外,开发者还注意到之前为了解决另一个问题(模型推理中的张量设备不一致问题),修改了infer_engine.py文件中的代码,但确认这一修改与本问题无直接关联。
解决方案
针对这一问题,推荐采取以下解决方案:
-
移除sequence_parallel_size参数:在当前的训练配置下,暂时不使用序列并行可以避免NLL_Loss异常的问题。
-
数据完整性检查:虽然主要问题已定位到并行参数,但仍建议对训练数据进行全面检查,确保每条数据都包含完整的assistant响应部分,避免因数据缺失导致的其他潜在问题。
-
梯度监控:在训练初期加入梯度监控机制,可以更早发现数值不稳定的情况。
经验总结
这一案例为使用MS-SWIFT进行RLHF训练提供了宝贵经验:
-
并行策略的选择需要谨慎,特别是在结合特定模型架构和训练方法时,某些并行参数可能导致意外的数值计算问题。
-
在损失函数出现NaN时,除了检查数据质量外,还应该考虑训练框架层面的配置参数影响。
-
对于复杂的训练流程(如RFT+DPO),建议采用分阶段验证的方式,先确保基础训练正常,再逐步添加高级特性。
这一问题的解决为后续在MS-SWIFT框架下开展类似训练任务提供了重要参考,特别是在处理序列并行与损失计算交互时的注意事项。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









