Swift项目中InternVL3-38B模型DPO训练问题分析与解决方案
问题背景
在Swift项目中使用InternVL3-38B模型进行DPO(Direct Preference Optimization)训练时,开发者遇到了两个主要的技术挑战:模型加载阶段的TypeError错误和训练过程中的显存不足问题。
问题一:模型加载错误
错误现象
在加载InternVL3-38B模型时,系统抛出TypeError异常,提示"NoneType object is not iterable"。这一错误发生在transformers库的caching_allocator_warmup函数中,具体是在处理模型并行计划(_tp_plan)时发生的。
根本原因
该问题的根源在于transformers库在模型并行训练环境下尝试访问模型的_tp_plan属性,但该属性在某些情况下可能为None。当_tp_plan为None时,代码尝试对其进行迭代操作,导致了TypeError异常。
解决方案
可以通过修改transformers库的源代码来解决这个问题。具体修改方式是将tp_plan_regex直接设置为None,避免对可能为None的_tp_plan属性进行迭代操作。
# 修改前
tp_plan_regex = (
re.compile("|".join([re.escape(plan) for plan in model._tp_plan]))
if _torch_distributed_available and torch.distributed.is_initialized()
else None
)
# 修改后
tp_plan_regex = None
问题二:显存不足问题
问题描述
即使在使用了4张90GB显存的GPU进行LoRA训练的情况下,系统仍然报告CUDA out of memory错误。这与之前版本仅需2张卡就能完成DPO训练的经验不符。
原因分析
显存不足问题可能由以下几个因素导致:
- 模型参数规模过大(38B参数)
- 批处理大小和梯度累积步数的设置
- 显存管理策略不够优化
- 新版本可能引入了额外的显存开销
解决方案
针对显存不足问题,可以采取以下措施:
- 使用更高效的显存管理策略:将deepspeed配置从zero2改为zero3,zero3策略能更有效地分割模型参数,减少单卡显存占用。
--deepspeed zero3
-
调整训练参数:
- 适当减少批处理大小(per_device_train_batch_size)
- 增加梯度累积步数(gradient_accumulation_steps)
- 使用更低的精度(torch_dtype)
-
优化LoRA配置:
- 降低LoRA的rank值(lora_rank)
- 调整LoRA的alpha值(lora_alpha)
最佳实践建议
-
大型模型训练策略:
- 对于超过30B参数的大模型,建议优先考虑使用deepspeed zero3策略
- 在资源有限的情况下,可以尝试模型并行或流水线并行技术
-
显存监控与优化:
- 训练前使用nvidia-smi监控显存使用情况
- 逐步增加批处理大小,找到最优配置
- 考虑使用梯度检查点技术减少显存占用
-
版本兼容性:
- 注意不同版本库之间的兼容性问题
- 及时关注项目更新日志,了解API变更
总结
在Swift项目中使用InternVL3-38B这类大型模型进行DPO训练时,开发者需要特别注意模型加载和显存管理两个关键环节。通过合理配置deepspeed策略和调整训练参数,可以有效解决大部分资源相关的问题。同时,对于开源库中的一些边界情况,必要时可以通过修改源代码来规避问题。这些经验不仅适用于InternVL3-38B模型,对于其他大型语言模型的训练也具有参考价值。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0113
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00