Swift项目中InternVL3-38B模型DPO训练问题分析与解决方案
问题背景
在Swift项目中使用InternVL3-38B模型进行DPO(Direct Preference Optimization)训练时,开发者遇到了两个主要的技术挑战:模型加载阶段的TypeError错误和训练过程中的显存不足问题。
问题一:模型加载错误
错误现象
在加载InternVL3-38B模型时,系统抛出TypeError异常,提示"NoneType object is not iterable"。这一错误发生在transformers库的caching_allocator_warmup函数中,具体是在处理模型并行计划(_tp_plan)时发生的。
根本原因
该问题的根源在于transformers库在模型并行训练环境下尝试访问模型的_tp_plan属性,但该属性在某些情况下可能为None。当_tp_plan为None时,代码尝试对其进行迭代操作,导致了TypeError异常。
解决方案
可以通过修改transformers库的源代码来解决这个问题。具体修改方式是将tp_plan_regex直接设置为None,避免对可能为None的_tp_plan属性进行迭代操作。
# 修改前
tp_plan_regex = (
re.compile("|".join([re.escape(plan) for plan in model._tp_plan]))
if _torch_distributed_available and torch.distributed.is_initialized()
else None
)
# 修改后
tp_plan_regex = None
问题二:显存不足问题
问题描述
即使在使用了4张90GB显存的GPU进行LoRA训练的情况下,系统仍然报告CUDA out of memory错误。这与之前版本仅需2张卡就能完成DPO训练的经验不符。
原因分析
显存不足问题可能由以下几个因素导致:
- 模型参数规模过大(38B参数)
- 批处理大小和梯度累积步数的设置
- 显存管理策略不够优化
- 新版本可能引入了额外的显存开销
解决方案
针对显存不足问题,可以采取以下措施:
- 使用更高效的显存管理策略:将deepspeed配置从zero2改为zero3,zero3策略能更有效地分割模型参数,减少单卡显存占用。
--deepspeed zero3
-
调整训练参数:
- 适当减少批处理大小(per_device_train_batch_size)
- 增加梯度累积步数(gradient_accumulation_steps)
- 使用更低的精度(torch_dtype)
-
优化LoRA配置:
- 降低LoRA的rank值(lora_rank)
- 调整LoRA的alpha值(lora_alpha)
最佳实践建议
-
大型模型训练策略:
- 对于超过30B参数的大模型,建议优先考虑使用deepspeed zero3策略
- 在资源有限的情况下,可以尝试模型并行或流水线并行技术
-
显存监控与优化:
- 训练前使用nvidia-smi监控显存使用情况
- 逐步增加批处理大小,找到最优配置
- 考虑使用梯度检查点技术减少显存占用
-
版本兼容性:
- 注意不同版本库之间的兼容性问题
- 及时关注项目更新日志,了解API变更
总结
在Swift项目中使用InternVL3-38B这类大型模型进行DPO训练时,开发者需要特别注意模型加载和显存管理两个关键环节。通过合理配置deepspeed策略和调整训练参数,可以有效解决大部分资源相关的问题。同时,对于开源库中的一些边界情况,必要时可以通过修改源代码来规避问题。这些经验不仅适用于InternVL3-38B模型,对于其他大型语言模型的训练也具有参考价值。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00