Swift项目中InternVL3-38B模型DPO训练问题分析与解决方案
问题背景
在Swift项目中使用InternVL3-38B模型进行DPO(Direct Preference Optimization)训练时,开发者遇到了两个主要的技术挑战:模型加载阶段的TypeError错误和训练过程中的显存不足问题。
问题一:模型加载错误
错误现象
在加载InternVL3-38B模型时,系统抛出TypeError异常,提示"NoneType object is not iterable"。这一错误发生在transformers库的caching_allocator_warmup函数中,具体是在处理模型并行计划(_tp_plan)时发生的。
根本原因
该问题的根源在于transformers库在模型并行训练环境下尝试访问模型的_tp_plan属性,但该属性在某些情况下可能为None。当_tp_plan为None时,代码尝试对其进行迭代操作,导致了TypeError异常。
解决方案
可以通过修改transformers库的源代码来解决这个问题。具体修改方式是将tp_plan_regex直接设置为None,避免对可能为None的_tp_plan属性进行迭代操作。
# 修改前
tp_plan_regex = (
re.compile("|".join([re.escape(plan) for plan in model._tp_plan]))
if _torch_distributed_available and torch.distributed.is_initialized()
else None
)
# 修改后
tp_plan_regex = None
问题二:显存不足问题
问题描述
即使在使用了4张90GB显存的GPU进行LoRA训练的情况下,系统仍然报告CUDA out of memory错误。这与之前版本仅需2张卡就能完成DPO训练的经验不符。
原因分析
显存不足问题可能由以下几个因素导致:
- 模型参数规模过大(38B参数)
- 批处理大小和梯度累积步数的设置
- 显存管理策略不够优化
- 新版本可能引入了额外的显存开销
解决方案
针对显存不足问题,可以采取以下措施:
- 使用更高效的显存管理策略:将deepspeed配置从zero2改为zero3,zero3策略能更有效地分割模型参数,减少单卡显存占用。
--deepspeed zero3
-
调整训练参数:
- 适当减少批处理大小(per_device_train_batch_size)
- 增加梯度累积步数(gradient_accumulation_steps)
- 使用更低的精度(torch_dtype)
-
优化LoRA配置:
- 降低LoRA的rank值(lora_rank)
- 调整LoRA的alpha值(lora_alpha)
最佳实践建议
-
大型模型训练策略:
- 对于超过30B参数的大模型,建议优先考虑使用deepspeed zero3策略
- 在资源有限的情况下,可以尝试模型并行或流水线并行技术
-
显存监控与优化:
- 训练前使用nvidia-smi监控显存使用情况
- 逐步增加批处理大小,找到最优配置
- 考虑使用梯度检查点技术减少显存占用
-
版本兼容性:
- 注意不同版本库之间的兼容性问题
- 及时关注项目更新日志,了解API变更
总结
在Swift项目中使用InternVL3-38B这类大型模型进行DPO训练时,开发者需要特别注意模型加载和显存管理两个关键环节。通过合理配置deepspeed策略和调整训练参数,可以有效解决大部分资源相关的问题。同时,对于开源库中的一些边界情况,必要时可以通过修改源代码来规避问题。这些经验不仅适用于InternVL3-38B模型,对于其他大型语言模型的训练也具有参考价值。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00