xuniren 项目使用指南
1. 项目介绍
xuniren 是一个基于 NeRF(Neural Radiance Fields)技术的开源项目,旨在实现虚拟人说话头的实时生成和驱动。该项目通过结合最新的深度学习和计算机图形学技术,能够生成高质量的虚拟人视频,并支持实时语音驱动。xuniren 项目不仅适用于娱乐和社交领域,还可以应用于教育、培训、虚拟助手等多个场景。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统满足以下要求:
- Ubuntu 22.04 或 Windows 10/11
- Python 3.9 或更高版本
- PyTorch 1.12 或更高版本
- CUDA 11.6 或更高版本
2.2 安装依赖
首先,克隆项目仓库并进入项目目录:
git clone https://github.com/waityousea/xuniren.git
cd xuniren
安装项目所需的依赖:
# 安装 portaudio(仅适用于 Ubuntu)
sudo apt install portaudio19-dev
# 安装项目依赖
pip install -r requirements.txt
2.3 安装 pytorch3d
在 Windows 系统上,需要安装 gcc 编译器(推荐使用 MinGW)。然后按照以下步骤安装 pytorch3d:
conda create -n pytorch3d python=3.9
conda activate pytorch3d
conda install pytorch=1.13.0 torchvision pytorch-cuda=11.6 -c pytorch -c nvidia
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c bottler nvidiacub
在“x64 Native Tools Command Prompt for VS 2019”命令窗口中编译安装 pytorch3d:
git clone https://github.com/facebookresearch/pytorch3d.git
cd pytorch3d
python setup.py install
2.4 启动虚拟人生成器
环境配置完成后,启动虚拟人生成器:
python app.py start
2.5 启动 Fay 对接脚本
如果需要对接 Fay 项目,可以启动 Fay 对接脚本:
python fay_connect.py
3. 应用案例和最佳实践
3.1 虚拟主播
xuniren 项目可以用于创建虚拟主播,通过实时语音驱动生成虚拟人的视频内容。虚拟主播可以应用于直播、短视频制作等领域,为用户提供更加生动和互动的体验。
3.2 虚拟助手
在教育和培训领域,xuniren 可以用于创建虚拟助手,帮助学生和员工进行学习和培训。虚拟助手可以通过语音交互提供个性化的指导和反馈。
3.3 虚拟客服
在客户服务领域,xuniren 可以用于创建虚拟客服,通过实时语音驱动生成虚拟人的视频内容,提供更加人性化和高效的客户服务体验。
4. 典型生态项目
4.1 Fay 数字人项目
Fay 数字人项目是一个开源的数字人解决方案,提供了灵活的模块化设计,支持情绪分析、NLP 处理、语音合成和语音输出等功能。xuniren 项目可以与 Fay 项目无缝对接,共同构建智能、个性化和多功能的数字人应用。
4.2 RAD-NeRF 项目
RAD-NeRF 项目是一个基于 NeRF 技术的开源项目,专注于实现高质量的虚拟人视频生成。xuniren 项目借鉴了 RAD-NeRF 项目的核心算法,进一步优化了虚拟人的实时驱动效果。
通过以上步骤,您可以快速启动并使用 xuniren 项目,结合其他生态项目,构建出丰富多样的虚拟人应用。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00