首页
/ xuniren 项目使用指南

xuniren 项目使用指南

2024-09-13 07:57:20作者:咎岭娴Homer

1. 项目介绍

xuniren 是一个基于 NeRF(Neural Radiance Fields)技术的开源项目,旨在实现虚拟人说话头的实时生成和驱动。该项目通过结合最新的深度学习和计算机图形学技术,能够生成高质量的虚拟人视频,并支持实时语音驱动。xuniren 项目不仅适用于娱乐和社交领域,还可以应用于教育、培训、虚拟助手等多个场景。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保您的系统满足以下要求:

  • Ubuntu 22.04 或 Windows 10/11
  • Python 3.9 或更高版本
  • PyTorch 1.12 或更高版本
  • CUDA 11.6 或更高版本

2.2 安装依赖

首先,克隆项目仓库并进入项目目录:

git clone https://github.com/waityousea/xuniren.git
cd xuniren

安装项目所需的依赖:

# 安装 portaudio(仅适用于 Ubuntu)
sudo apt install portaudio19-dev

# 安装项目依赖
pip install -r requirements.txt

2.3 安装 pytorch3d

在 Windows 系统上,需要安装 gcc 编译器(推荐使用 MinGW)。然后按照以下步骤安装 pytorch3d:

conda create -n pytorch3d python=3.9
conda activate pytorch3d
conda install pytorch=1.13.0 torchvision pytorch-cuda=11.6 -c pytorch -c nvidia
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c bottler nvidiacub

在“x64 Native Tools Command Prompt for VS 2019”命令窗口中编译安装 pytorch3d:

git clone https://github.com/facebookresearch/pytorch3d.git
cd pytorch3d
python setup.py install

2.4 启动虚拟人生成器

环境配置完成后,启动虚拟人生成器:

python app.py start

2.5 启动 Fay 对接脚本

如果需要对接 Fay 项目,可以启动 Fay 对接脚本:

python fay_connect.py

3. 应用案例和最佳实践

3.1 虚拟主播

xuniren 项目可以用于创建虚拟主播,通过实时语音驱动生成虚拟人的视频内容。虚拟主播可以应用于直播、短视频制作等领域,为用户提供更加生动和互动的体验。

3.2 虚拟助手

在教育和培训领域,xuniren 可以用于创建虚拟助手,帮助学生和员工进行学习和培训。虚拟助手可以通过语音交互提供个性化的指导和反馈。

3.3 虚拟客服

在客户服务领域,xuniren 可以用于创建虚拟客服,通过实时语音驱动生成虚拟人的视频内容,提供更加人性化和高效的客户服务体验。

4. 典型生态项目

4.1 Fay 数字人项目

Fay 数字人项目是一个开源的数字人解决方案,提供了灵活的模块化设计,支持情绪分析、NLP 处理、语音合成和语音输出等功能。xuniren 项目可以与 Fay 项目无缝对接,共同构建智能、个性化和多功能的数字人应用。

4.2 RAD-NeRF 项目

RAD-NeRF 项目是一个基于 NeRF 技术的开源项目,专注于实现高质量的虚拟人视频生成。xuniren 项目借鉴了 RAD-NeRF 项目的核心算法,进一步优化了虚拟人的实时驱动效果。

通过以上步骤,您可以快速启动并使用 xuniren 项目,结合其他生态项目,构建出丰富多样的虚拟人应用。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5