CEEMDAN_LSTM 项目教程
2026-01-22 04:30:26作者:霍妲思
1. 项目介绍
CEEMDAN_LSTM 是一个基于 EMD(Empirical Mode Decomposition)方法和 LSTM(Long Short-Term Memory)神经网络的 Python 项目,用于分解-集成预测模型。该项目旨在帮助初学者快速实现基于 CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)的分解-集成预测。
主要特点
- 分解方法:使用 CEEMDAN 进行数据分解。
- 预测模型:结合 LSTM 神经网络进行预测。
- 易于使用:提供快速启动和详细的示例代码。
2. 项目快速启动
安装
通过 PyPi 安装(推荐)
pip install CEEMDAN_LSTM
从源代码安装
git clone https://github.com/FateMurphy/CEEMDAN_LSTM.git
cd CEEMDAN_LSTM
python setup.py install
快速预测示例
import CEEMDAN_LSTM as cl
# 加载内置数据集
data = cl.load_dataset()
# 快速预测
cl.quick_keras_predict(data=data)
3. 应用案例和最佳实践
案例1:股票价格预测
使用 CEEMDAN_LSTM 进行股票价格预测是一个典型的应用场景。以下是一个简单的示例代码:
import CEEMDAN_LSTM as cl
# 加载股票数据
data = cl.load_dataset('sp500.csv')
# 进行统计测试
cl.statis_tests(data['close'])
# 定义预测器
kr = cl.keras_predictor()
# 进行预测
df_result = kr.hybrid_keras_predict(data=data['close'], show=True, plot=True, save=True)
案例2:碳价格预测
参考论文:F. Zhou, Z. Huang, C. Zhang, "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, 2022.
import CEEMDAN_LSTM as cl
# 加载碳价格数据
data = cl.load_dataset('carbon_price.csv')
# 进行统计测试
cl.statis_tests(data['price'])
# 定义预测器
kr = cl.keras_predictor()
# 进行预测
df_result = kr.hybrid_keras_predict(data=data['price'], show=True, plot=True, save=True)
4. 典型生态项目
相关项目
- EMD-LSTM:基于 EMD 和 LSTM 的预测模型。
- EEMD-LSTM:基于 EEMD(Ensemble Empirical Mode Decomposition)和 LSTM 的预测模型。
- VMD-LSTM:基于 VMD(Variational Mode Decomposition)和 LSTM 的预测模型。
生态工具
- Keras:深度学习框架,用于构建和训练 LSTM 模型。
- Pandas:数据处理和分析工具,用于加载和处理数据。
- Matplotlib:数据可视化工具,用于绘制预测结果。
通过这些工具和项目的结合,可以构建更复杂和强大的预测模型。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
480
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882