【亲测免费】 CEEMDAN_LSTM:基于EMD和LSTM的时间序列预测工具
2026-01-22 05:01:24作者:凌朦慧Richard
项目介绍
CEEMDAN_LSTM 是一个基于Python的开源模块,专为时间序列预测而设计。它结合了CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)和LSTM(Long Short-Term Memory)两种先进的技术,旨在帮助初学者快速构建分解-集成预测模型。CEEMDAN_LSTM不仅提供了强大的预测功能,还内置了多种数据集和预处理工具,使得用户可以轻松上手并进行实验。
项目技术分析
核心技术
- CEEMDAN:CEEMDAN是一种改进的经验模态分解(EMD)方法,能够有效处理非线性和非平稳信号。它通过引入自适应噪声,提高了分解的稳定性和准确性。
- LSTM:LSTM是一种特殊的循环神经网络(RNN),擅长处理时间序列数据中的长期依赖问题。它通过门控机制,有效避免了传统RNN中的梯度消失问题。
技术流程
CEEMDAN_LSTM的工作流程如下:
- 数据分解:首先使用CEEMDAN对原始时间序列进行分解,生成多个本征模态函数(IMF)。
- 数据集成:将分解后的IMF进行集成,形成新的特征矩阵。
- 模型训练:使用LSTM网络对集成后的数据进行训练,学习时间序列的动态特征。
- 预测输出:利用训练好的模型进行未来时间点的预测。
项目及技术应用场景
CEEMDAN_LSTM适用于多种时间序列预测场景,包括但不限于:
- 金融预测:如股票价格、汇率、期货价格等。
- 能源管理:如电力负荷预测、碳排放预测等。
- 环境监测:如气象数据预测、水质监测等。
- 工业生产:如设备故障预测、生产效率预测等。
项目特点
1. 易用性
CEEMDAN_LSTM提供了简洁的API接口,用户可以通过几行代码快速实现时间序列预测。模块内置了多种数据集和预处理工具,降低了使用门槛。
2. 灵活性
模块支持多种分解方法(如EMD、EEMD、CEEMDAN等)和多种LSTM变体(如GRU、DNN等),用户可以根据具体需求选择合适的模型配置。
3. 可扩展性
CEEMDAN_LSTM支持从源码进行修改和扩展,用户可以根据自己的需求定制模型。此外,模块还提供了TPU支持,适用于大规模数据处理。
4. 可视化
模块内置了丰富的可视化工具,用户可以直观地查看数据分解结果、模型训练过程和预测结果,便于分析和调试。
结语
CEEMDAN_LSTM是一个功能强大且易于使用的时间序列预测工具,它结合了CEEMDAN和LSTM的优点,能够有效处理复杂的时间序列数据。无论你是时间序列分析的新手还是专家,CEEMDAN_LSTM都能为你提供有力的支持。快来尝试吧,探索时间序列预测的无限可能!
GitHub项目地址:CEEMDAN_LSTM
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355