PolyFormer 项目使用教程
2024-09-13 18:21:34作者:羿妍玫Ivan
1. 项目介绍
PolyFormer 是一个统一模型,用于图像分割(多边形顶点序列)和引用表达理解(边界框角点)。该项目由亚马逊科学团队开发,旨在通过将图像分割和引用表达理解问题转化为序列到序列(seq2seq)预测问题,提供一种高效的解决方案。PolyFormer 在多个数据集上取得了最先进的结果,并且提供了一个回归解码器,用于精确的坐标预测,直接输出连续的2D坐标,避免了量化误差。
2. 项目快速启动
安装环境
首先,创建并激活一个 Conda 环境:
conda create -n polyformer python=3.7.4
conda activate polyformer
然后,安装项目依赖:
python -m pip install -r requirements.txt
如果遇到 fairseq 的导入错误,可以尝试以下命令:
python -m pip install pip==21.2.4
pip uninstall fairseq
pip install -r requirements.txt
数据准备
预训练数据
创建数据目录并下载数据:
mkdir datasets
mkdir datasets/images
mkdir datasets/annotations
下载 COCO 2014 训练图像、Flickr30K 图像、ReferItGame 图像和 Visual Genome 图像,并解压到 datasets/images 目录。下载预训练数据集的标注文件 instances.json,并存储在 datasets/annotations 目录。
微调数据
按照 refer 目录中的说明设置子目录并下载标注文件。生成微调数据的 tsv 文件:
python data/create_finetuning_data.py
预训练
创建检查点目录并下载预训练权重:
mkdir pretrained_weights
下载 Swin-base、Swin-large 和 BERT-base 的预训练权重,并将其放入 pretrained_weights 目录。运行预训练脚本:
cd run_scripts/pretrain
bash pretrain_polyformer_b.sh # 预训练 PolyFormer-B 模型
bash pretrain_polyformer_l.sh # 预训练 PolyFormer-L 模型
微调
运行微调脚本:
cd run_scripts/finetune
bash train_polyformer_b.sh # 微调 PolyFormer-B 模型
bash train_polyformer_l.sh # 微调 PolyFormer-L 模型
确保在微调脚本中链接预训练权重路径到最佳预训练检查点。
评估
运行评估脚本:
cd run_scripts/evaluation
bash evaluate_polyformer_b_refcoco.sh # 评估 PolyFormer-B 模型
bash evaluate_polyformer_l_refcoco.sh # 评估 PolyFormer-L 模型
3. 应用案例和最佳实践
PolyFormer 可以应用于多种场景,包括但不限于:
- 图像分割:在医学影像分析中,PolyFormer 可以帮助医生更准确地分割病变区域。
- 引用表达理解:在智能助手和机器人导航中,PolyFormer 可以帮助系统理解用户的指令并执行相应的操作。
最佳实践包括:
- 数据预处理:确保输入数据的格式和质量,以提高模型的性能。
- 模型调优:根据具体应用场景调整模型参数,以达到最佳效果。
4. 典型生态项目
PolyFormer 作为一个开源项目,可以与其他计算机视觉和自然语言处理项目结合使用,例如:
- Fairseq:用于序列到序列模型的训练和评估。
- COCO API:用于处理和加载 COCO 数据集。
- Flickr30K:用于图像描述和引用表达理解的数据集。
这些项目可以与 PolyFormer 结合,构建更复杂的应用系统。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210