GLM-4工具调用微调数据构建指南
2025-06-03 22:37:01作者:瞿蔚英Wynne
在GLM-4项目中,工具调用(Tool Calling)是一项重要功能,它允许模型根据用户需求动态调用外部工具并返回结果。本文将详细介绍如何构建工具调用的微调数据,帮助开发者更好地理解和应用这一功能。
工具调用微调数据的基本结构
工具调用的微调数据采用JSON格式,主要包含以下几个部分:
- 系统消息(system):定义可用的工具列表及其参数规范
- 用户消息(user):用户的输入或问题
- 助手响应(assistant):模型生成的工具调用请求
- 观察结果(observation):工具执行后返回的结果
- 最终响应(assistant):模型基于工具结果生成的最终回答
单工具调用示例
以下是一个天气查询工具的完整微调数据示例:
{
"messages":[
{
"role": "system",
"content": null,
"tools": [
{
"type": "function",
"function": {
"name": "weather",
"description": "该工具只能得到指定城市的天气信息",
"parameters": {
"type": "object",
"properties": {
"city": {
"description": "城市名称",
"type": "string"
}
},
"required": ["city"]
}
}
}
]
},
{
"role": "user",
"content": "今天深圳天气怎么样"
},
{
"role": "assistant",
"content": 'weather\n{"city": "深圳"}'
},
{
"role": "observation",
"content": "city: 深圳, weather: 晴 temperature: 17.0℃,humidity: 49.0%,winddirection: 北,windpower: ≤3"
},
{
"role": "assistant",
"content": "今天深圳的天气预报显示为晴,气温约为17.0℃,相对湿度为49.0%,风向为北风,风力较小,不超过3级。"
}
]
}
多工具调用的处理
当系统中有多个工具时,微调数据的构建需要注意以下几点:
- 工具列表定义:在system消息中列出所有可用工具及其参数规范
- 工具选择逻辑:根据用户问题选择最合适的工具进行调用
- 结果整合:可能需要组合多个工具的结果来回答复杂问题
多工具场景下的微调数据示例如下:
{
"messages":[
{
"role": "system",
"content": null,
"tools": [
{
"type": "function",
"function": {
"name": "weather",
"description": "获取城市天气信息",
"parameters": {...}
}
},
{
"type": "function",
"function": {
"name": "purchase_order",
"description": "解析采购订单信息",
"parameters": {...}
}
}
]
},
{
"role": "user",
"content": "深圳今天的天气如何?另外请帮我解析这个采购订单..."
},
{
"role": "assistant",
"content": 'weather\n{"city": "深圳"}\npurchase_order\n{...}'
},
{
"role": "observation",
"content": "weather_result:..., purchase_order_result:..."
},
{
"role": "assistant",
"content": "深圳今天的天气...关于采购订单..."
}
]
}
微调数据构建的最佳实践
- 工具描述清晰:确保每个工具的描述准确说明其功能和限制
- 参数规范完整:明确定义每个参数的名称、类型、描述和是否必需
- 结果格式统一:工具返回的结果应采用一致的格式,便于模型解析
- 对话流程完整:确保从用户问题到最终回答的完整对话流程
- 错误处理考虑:考虑工具调用失败时的处理方式
总结
GLM-4的工具调用功能为模型赋予了更强的实用能力。通过精心构建微调数据,开发者可以训练出能够准确理解用户意图、正确调用工具并生成有用回答的模型。本文提供的示例和最佳实践将帮助开发者更好地应用这一功能,构建更强大的AI应用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
447
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
451
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705