GLM-4工具调用微调数据构建指南
2025-06-03 19:18:43作者:瞿蔚英Wynne
在GLM-4项目中,工具调用(Tool Calling)是一项重要功能,它允许模型根据用户需求动态调用外部工具并返回结果。本文将详细介绍如何构建工具调用的微调数据,帮助开发者更好地理解和应用这一功能。
工具调用微调数据的基本结构
工具调用的微调数据采用JSON格式,主要包含以下几个部分:
- 系统消息(system):定义可用的工具列表及其参数规范
- 用户消息(user):用户的输入或问题
- 助手响应(assistant):模型生成的工具调用请求
- 观察结果(observation):工具执行后返回的结果
- 最终响应(assistant):模型基于工具结果生成的最终回答
单工具调用示例
以下是一个天气查询工具的完整微调数据示例:
{
"messages":[
{
"role": "system",
"content": null,
"tools": [
{
"type": "function",
"function": {
"name": "weather",
"description": "该工具只能得到指定城市的天气信息",
"parameters": {
"type": "object",
"properties": {
"city": {
"description": "城市名称",
"type": "string"
}
},
"required": ["city"]
}
}
}
]
},
{
"role": "user",
"content": "今天深圳天气怎么样"
},
{
"role": "assistant",
"content": 'weather\n{"city": "深圳"}'
},
{
"role": "observation",
"content": "city: 深圳, weather: 晴 temperature: 17.0℃,humidity: 49.0%,winddirection: 北,windpower: ≤3"
},
{
"role": "assistant",
"content": "今天深圳的天气预报显示为晴,气温约为17.0℃,相对湿度为49.0%,风向为北风,风力较小,不超过3级。"
}
]
}
多工具调用的处理
当系统中有多个工具时,微调数据的构建需要注意以下几点:
- 工具列表定义:在system消息中列出所有可用工具及其参数规范
- 工具选择逻辑:根据用户问题选择最合适的工具进行调用
- 结果整合:可能需要组合多个工具的结果来回答复杂问题
多工具场景下的微调数据示例如下:
{
"messages":[
{
"role": "system",
"content": null,
"tools": [
{
"type": "function",
"function": {
"name": "weather",
"description": "获取城市天气信息",
"parameters": {...}
}
},
{
"type": "function",
"function": {
"name": "purchase_order",
"description": "解析采购订单信息",
"parameters": {...}
}
}
]
},
{
"role": "user",
"content": "深圳今天的天气如何?另外请帮我解析这个采购订单..."
},
{
"role": "assistant",
"content": 'weather\n{"city": "深圳"}\npurchase_order\n{...}'
},
{
"role": "observation",
"content": "weather_result:..., purchase_order_result:..."
},
{
"role": "assistant",
"content": "深圳今天的天气...关于采购订单..."
}
]
}
微调数据构建的最佳实践
- 工具描述清晰:确保每个工具的描述准确说明其功能和限制
- 参数规范完整:明确定义每个参数的名称、类型、描述和是否必需
- 结果格式统一:工具返回的结果应采用一致的格式,便于模型解析
- 对话流程完整:确保从用户问题到最终回答的完整对话流程
- 错误处理考虑:考虑工具调用失败时的处理方式
总结
GLM-4的工具调用功能为模型赋予了更强的实用能力。通过精心构建微调数据,开发者可以训练出能够准确理解用户意图、正确调用工具并生成有用回答的模型。本文提供的示例和最佳实践将帮助开发者更好地应用这一功能,构建更强大的AI应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178