在GLM-4微调模型中使用System Prompt的技术指南
在自然语言处理领域,System Prompt(系统提示)是一种强大的技术手段,它能够引导语言模型生成更符合预期的输出。本文将详细介绍如何在GLM-4微调模型中有效地使用System Prompt。
System Prompt的基本概念
System Prompt是指对话系统中预先设定的系统级提示信息,它通常包含了对模型行为的指导性说明。与用户直接输入的内容不同,System Prompt在对话开始前就设定了模型的行为准则和响应风格。
在GLM-4中实现System Prompt
GLM-4模型支持通过消息列表中的"system"角色来设置System Prompt。具体实现方式如下:
messages = [
{
"role": "system",
"content": "你是一个时尚领域的专家,请根据用户提供的关键词生成相关的时尚建议。"
},
{
"role": "user",
"content": "#裙子#夏天"
}
]
技术实现细节
-
消息结构:GLM-4采用类似ChatML的消息格式,支持"system"、"user"和"assistant"三种角色。
-
模板应用:通过
apply_chat_template
方法将消息列表转换为模型可理解的输入格式。 -
微调模型适配:对于微调后的模型,System Prompt的处理方式与基础模型一致,无需特殊处理。
最佳实践建议
-
明确指导:System Prompt应清晰明确地表达对模型行为的期望。
-
适度长度:避免过长的System Prompt,通常100-300字为宜。
-
领域适配:根据具体应用场景定制System Prompt内容。
-
测试验证:通过多次测试验证System Prompt的效果。
实际应用示例
以下是一个完整的代码示例,展示了如何在GLM-4微调模型中使用System Prompt:
from transformers import AutoModel, AutoTokenizer
import torch
# 加载模型和分词器
model = AutoModel.from_pretrained("your_model_path", torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("your_model_path")
# 构建包含System Prompt的消息
messages = [
{"role": "system", "content": "你是一个时尚顾问,请用专业但易懂的语言回答用户问题。"},
{"role": "user", "content": "#裙子#夏天"}
]
# 应用聊天模板
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
).to(model.device)
# 生成响应
outputs = model.generate(**inputs, max_new_tokens=1024)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
常见问题解决
-
System Prompt无效:检查消息列表中"system"角色的拼写是否正确。
-
模型忽略提示:尝试调整System Prompt的表达方式,使其更加明确。
-
性能问题:过长的System Prompt可能会影响推理速度,建议优化提示内容。
通过合理使用System Prompt,开发者可以更好地控制GLM-4模型的行为,使其生成更符合特定场景需求的输出。这一技术在客服系统、内容生成等应用场景中尤为重要。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









