在GLM-4微调模型中使用System Prompt的技术指南
在自然语言处理领域,System Prompt(系统提示)是一种强大的技术手段,它能够引导语言模型生成更符合预期的输出。本文将详细介绍如何在GLM-4微调模型中有效地使用System Prompt。
System Prompt的基本概念
System Prompt是指对话系统中预先设定的系统级提示信息,它通常包含了对模型行为的指导性说明。与用户直接输入的内容不同,System Prompt在对话开始前就设定了模型的行为准则和响应风格。
在GLM-4中实现System Prompt
GLM-4模型支持通过消息列表中的"system"角色来设置System Prompt。具体实现方式如下:
messages = [
{
"role": "system",
"content": "你是一个时尚领域的专家,请根据用户提供的关键词生成相关的时尚建议。"
},
{
"role": "user",
"content": "#裙子#夏天"
}
]
技术实现细节
-
消息结构:GLM-4采用类似ChatML的消息格式,支持"system"、"user"和"assistant"三种角色。
-
模板应用:通过
apply_chat_template方法将消息列表转换为模型可理解的输入格式。 -
微调模型适配:对于微调后的模型,System Prompt的处理方式与基础模型一致,无需特殊处理。
最佳实践建议
-
明确指导:System Prompt应清晰明确地表达对模型行为的期望。
-
适度长度:避免过长的System Prompt,通常100-300字为宜。
-
领域适配:根据具体应用场景定制System Prompt内容。
-
测试验证:通过多次测试验证System Prompt的效果。
实际应用示例
以下是一个完整的代码示例,展示了如何在GLM-4微调模型中使用System Prompt:
from transformers import AutoModel, AutoTokenizer
import torch
# 加载模型和分词器
model = AutoModel.from_pretrained("your_model_path", torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("your_model_path")
# 构建包含System Prompt的消息
messages = [
{"role": "system", "content": "你是一个时尚顾问,请用专业但易懂的语言回答用户问题。"},
{"role": "user", "content": "#裙子#夏天"}
]
# 应用聊天模板
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
).to(model.device)
# 生成响应
outputs = model.generate(**inputs, max_new_tokens=1024)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
常见问题解决
-
System Prompt无效:检查消息列表中"system"角色的拼写是否正确。
-
模型忽略提示:尝试调整System Prompt的表达方式,使其更加明确。
-
性能问题:过长的System Prompt可能会影响推理速度,建议优化提示内容。
通过合理使用System Prompt,开发者可以更好地控制GLM-4模型的行为,使其生成更符合特定场景需求的输出。这一技术在客服系统、内容生成等应用场景中尤为重要。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00