探索细胞世界的桥梁:LIGER 单细胞数据集成工具

在生物科学的微观世界中,单细胞测序技术正引领一场革命。然而,不同实验批次、个体、性别或组织之间的数据比较和整合一直是挑战。现在,借助 LIGER(Linked Inference of Genomic Experimental Relationships) 这一开源工具,这些问题变得不再棘手。LIGER 是由 Macosko 实验室开发并由 Welch 实验室维护和扩展的单细胞数据集成和分析包,其强大的功能将为您的研究带来新的洞察。
项目介绍
LIGER 提供了一种基于非负矩阵因子分解的综合方法,能识别共享和特定于数据集的因素。这个包不仅可以让您轻松地比较和对比多个单细胞数据集,还能用于各种场景,包括但不限于:
- 不同实验批次间
- 不同个体间
- 不同性别人群
- 不同组织
- 跨物种(如人类与小鼠)
- 跨模态(例如,scRNAseq 和空间转录组学数据)
LIGER 也提供了后期的数据探索、分析和可视化工具,允许用户识别细胞簇、找到显著的共享基因标记,并将细胞簇与已知细胞类型进行比较。
技术分析
LIGER 的核心是它的集成策略,即通过迭代的单细胞多组学集成(在线 iNMF)来处理复杂的数据。此外,它还支持未共享特征的 UINMF 方法,这使得跨物种分析、单细胞 ATAC-seq 和 RNA 测序数据的整合成为可能。它与现有的单细胞分析工具(如 Seurat)无缝对接,增强了现有生态系统的能力。
应用场景
LIGER 在多个领域都有着广泛的应用前景,无论是基础研究还是临床应用。例如,您可以使用它来深入理解疾病的发展过程,比较不同治疗方法的效果,或者揭示不同物种之间细胞类型的相似性和差异。
项目特点
- 高效集成:通过非负矩阵因子分解算法,LIGER 能够整合多种类型和来源的单细胞数据。
- 灵活适应:可以应用于多种单细胞技术,包括 RNA-seq、ATAC-seq 和甲基化等。
- 直观可视化:提供 t-SNE 和 UMAP 等工具,帮助研究人员快速理解大量数据。
- 兼容性强:与 Seurat 的无缝配合,方便对已有的分析流程进行扩展。
- 全面文档:详尽的教程和示例,以及在 R 中运行的 vignettes,让新手也能迅速上手。
使用与安装
要开始使用 LIGER,首先确保您的系统满足硬件和软件要求,然后通过 R 或 RStudio 安装包。在 CRAN 上直接安装,只需一行 R 命令:
install.packages('rliger')
若想获取最新开发版本,可以从 GitHub 上的仓库克隆源代码后进行安装。
LIGER 还提供了一系列的示例数据和使用指南,以帮助您快速了解如何利用 LIGER 解决具体问题。
在细胞科学的迷宫中,LIGER 将作为您可靠的向导,引导您发现隐藏的模式,揭示生命奥秘的新视角。立即尝试 LIGER,开启您的单细胞数据分析之旅吧!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00