探索单细胞表观基因组的新维度:SnapATAC
SnapATAC,全称Single Nucleus Analysis Pipeline for ATAC-seq,是一个高效、精确且全面的工具,专为解析单细胞ATAC-seq数据而设计。这个开源项目由Rongxin Fang等人开发,并持续更新以满足最新的科学研究需求。
项目介绍
SnapATAC提供了从预处理到下游分析的一站式解决方案。最新版本SnapATAC 2.0引入了新的功能和改进,包括链接远端元件至潜在目标基因、整合scRNA和scATAC数据、采用新方法进行降维分析、利用Leiden算法进行聚类以及批处理效应校正等。此外,它还集成了chromVAR进行motif分析,使得研究者可以深入挖掘单细胞表观遗传学信息。
项目技术分析
SnapATAC包含两个组件:SnapTools(Python模块)和SnapATAC(R包)。SnapTools用于预处理和管理snap文件,这是一种高效的单细胞数据存储格式。SnapATAC则负责数据的聚类、注释、motif发现和后续分析。这两个组件相辅相成,为用户提供无缝的数据处理体验。
项目对Python 2.7和R 3.4.0至3.5.x版本的支持,确保在大多数科学计算环境中都能顺利运行。通过pip安装SnapTools,R中使用devtools安装SnapATAC,即可快速上手。
项目及技术应用场景
SnapATAC的应用场景广泛,特别适合于研究复杂组织中的稀有细胞类型,如神经元或免疫细胞。它能够帮助科学家快速准确地对单个细胞进行表观遗传学聚类,识别特定细胞类型的cis-regulatory元素,甚至结合scRNA-seq数据,提供多维度的细胞状态洞察。
项目特点
- 高效性:SnapATAC优化了计算流程,使其能在相对较短的时间内处理大量单细胞ATAC-seq数据。
- 准确性:通过先进的算法和方法,SnapATAC提供的聚类和分析结果高度可靠。
- 全面性:除了基本的数据处理,还包括motif分析、批处理效应纠正等多种高级功能。
- 易用性:清晰的文档、示例教程和常见问题解答,使新手也能轻松上手。
- 灵活性:支持多种数据来源和样本组合分析。
想要深入探索单细胞表观遗传学的奥秘吗?尝试SnapATAC,让我们一起揭示生命的微观世界。了解更多详细信息,请访问SnapATAC的GitHub页面:https://github.com/r3fang/SnapATAC。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00