VLM-R1项目中Qwen2.5-VL模型的指代表达理解性能分析与优化实践
2025-06-11 22:04:02作者:羿妍玫Ivan
背景与问题发现
在视觉语言模型VLM-R1的研究中,Qwen2.5-VL作为基线模型在指代表达理解(Referring Expression Comprehension,REC)任务上的表现引起了研究者的关注。原始论文报告该模型在refcoco/+/g验证集上的平均准确率为73.7%,但社区成员在实际测试中发现,通过调整提示词模板,模型性能可以提升至82.1%,接近R1版本的性能水平。
核心问题剖析
经过深入分析,发现性能差异主要源于以下技术细节:
-
提示词模板敏感性:
- 原始使用的模板:"Please provide the bounding box coordinate of the region this sentence describes: {referring expression}"
- 优化后的模板明确要求JSON格式输出:"{Question}. Output the answer in pixel coordinates in the format of [x1, y1, x2, y2]..."
-
输出格式不稳定性:
- 模型存在两种输出模式:归一化坐标(0-1范围)和绝对像素坐标
- 3B参数模型在未经微调时更倾向于输出归一化坐标,导致准确率波动
-
评估标准适配:
- 原始评估代码需要同时处理两种坐标格式的ground truth
- 格式不匹配会显著影响最终评估结果
解决方案与优化实践
研究团队针对上述问题实施了多项改进:
-
提示词工程优化:
- 采用更结构化的输出要求
- 明确指定坐标范围和格式规范
- 参考Qwen官方示例优化模板设计
-
评估流程增强:
- 更新基线测试脚本,确保评估一致性
- 增加坐标格式自动检测和转换逻辑
- 实现分布式评估支持
-
模型微调策略:
- 在R1版本中引入格式奖励机制
- 通过强化学习引导模型输出规范格式
性能对比与验证
在不同配置下获得的测试结果:
-
基线模型:
- refcoco_val: 77.8%
- refcocop_val: 71.6%
- refcocog_val: 71.8%
-
优化提示词后:
- 平均准确率提升至82.1%
- 接近Qwen2-VL-2B报告的性能(82.1%)
-
R1微调版本(7B):
- refcoco_val: 92.6%
- refcocop_val: 89.4%
- refcocog_val: 89.0%
- 展示出显著的性能提升
工程实践建议
基于项目经验,给出以下实施建议:
-
对于Qwen2.5-VL模型的REC任务:
- 优先使用结构化输出要求
- 明确指定像素坐标范围和输出格式
- 参考官方示例设计提示模板
-
评估时需注意:
- 检查模型输出格式是否与评估代码匹配
- 实现自动化的格式检测和转换
- 考虑同时支持归一化和绝对坐标
-
性能优化方向:
- 采用R1的微调策略
- 引入格式奖励机制
- 考虑更大参数量的模型版本
总结与展望
VLM-R1项目对Qwen2.5-VL模型的REC任务性能进行了深入探索,揭示了提示词工程和输出格式规范化对模型性能的重要影响。这些发现不仅为项目本身的优化提供了方向,也为视觉语言模型在实际应用中的部署提供了宝贵经验。未来可进一步探索:
- 更鲁棒的输出格式控制方法
- 跨数据集的泛化能力提升
- 小样本场景下的快速适配技术
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~090CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析4 freeCodeCamp博客页面工作坊中的断言方法优化建议5 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp音乐播放器项目中的函数调用问题解析9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp 课程中关于角色与职责描述的语法优化建议
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
889
527

openGauss kernel ~ openGauss is an open source relational database management system
C++
137
188

React Native鸿蒙化仓库
C++
183
265

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
368
382

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
737
105