首页
/ 探索视觉理解的新边界:Nested Hierarchical Transformer

探索视觉理解的新边界:Nested Hierarchical Transformer

2024-05-30 11:16:35作者:秋阔奎Evelyn

在计算机视觉领域,Transformer模型已经展现出强大的潜力,但如何让其更准确、数据效率更高且更具解释性一直是研究的焦点。【 Nested Hierarchical Transformer】(https://arxiv.org/pdf/2105.12723.pdf) 是一个由Jax实现的开源项目,它引入了一种简单的方法,通过在图像块上聚合嵌套的局部Transformer,从而提升视觉Transformer的表现。

项目简介

NesT的核心思想是将多层次的Transformer应用于图像处理,这种设计使得模型在ImageNet基准测试中能够获得更高的准确性,更快的收敛速度,并有效利用较小的数据集。NesT提供了从小型到大型不同规模的模型,以满足各种应用需求。

技术分析

NesT的独特之处在于它的“嵌套”和“层次化”设计。该架构通过将Transformer单元分层并逐层处理图像块,有效地捕获了图像的局部和全局特征。这种方法允许模型在保持高效的同时,提升了对复杂视觉信息的理解。

应用场景

  1. 图像分类:NesT在ImageNet上的出色性能使其成为图像分类任务的理想选择。
  2. 数据效率训练:对于资源有限或小样本学习的任务,NesT能更好地利用有限的数据进行训练。
  3. 解释性视觉理解:由于其层次化的结构,NesT在提供可解释的视觉结果方面有潜在优势。

项目特点

  1. 高精度:与传统的视觉模型相比,NesT在ImageNet上的表现显著提高,最高可达83.8%的准确性。
  2. 数据效率:即使在小型数据集上,也能达到与卷积神经网络(CNN)相当的准确性。
  3. 快速收敛:NesT的设计加速了训练过程,减少了所需的计算资源。
  4. 多平台支持:除了官方的Jax实现,还有Pytorch版本可供选择,便于不同开发环境的集成。

开始使用

要体验NesT的强大功能,您只需设置好Python环境,安装必要的依赖项,然后按照项目提供的脚本进行预训练模型评估或新模型的训练。对于初学者,还有Google Colab notebook供您快速试用。

让我们一起探索NesT的世界,开启视觉理解的新篇章吧!当您在实际项目中应用这些模型时,别忘了引用原始论文:

@inproceedings{zhang2021aggregating,
  title={Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and Interpretable Visual Understanding},
  author={Zizhao Zhang and Han Zhang and Long Zhao and Ting Chen and and Sercan Ö. Arık and Tomas Pfister},
  booktitle={AAAI Conference on Artificial Intelligence (AAAI)},
  year={2022}
}

准备好加入这场视觉智能的革新之旅了吗?立即行动,让NesT助力您的项目取得突破性进展!

登录后查看全文
热门项目推荐

热门内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
261
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
509
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
257
300
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
kernelkernel
deepin linux kernel
C
22
5