探索视觉理解的新边界:Nested Hierarchical Transformer
2024-05-30 11:16:35作者:秋阔奎Evelyn
在计算机视觉领域,Transformer模型已经展现出强大的潜力,但如何让其更准确、数据效率更高且更具解释性一直是研究的焦点。【 Nested Hierarchical Transformer】(https://arxiv.org/pdf/2105.12723.pdf) 是一个由Jax实现的开源项目,它引入了一种简单的方法,通过在图像块上聚合嵌套的局部Transformer,从而提升视觉Transformer的表现。
项目简介
NesT的核心思想是将多层次的Transformer应用于图像处理,这种设计使得模型在ImageNet基准测试中能够获得更高的准确性,更快的收敛速度,并有效利用较小的数据集。NesT提供了从小型到大型不同规模的模型,以满足各种应用需求。
技术分析
NesT的独特之处在于它的“嵌套”和“层次化”设计。该架构通过将Transformer单元分层并逐层处理图像块,有效地捕获了图像的局部和全局特征。这种方法允许模型在保持高效的同时,提升了对复杂视觉信息的理解。
应用场景
- 图像分类:NesT在ImageNet上的出色性能使其成为图像分类任务的理想选择。
- 数据效率训练:对于资源有限或小样本学习的任务,NesT能更好地利用有限的数据进行训练。
- 解释性视觉理解:由于其层次化的结构,NesT在提供可解释的视觉结果方面有潜在优势。
项目特点
- 高精度:与传统的视觉模型相比,NesT在ImageNet上的表现显著提高,最高可达83.8%的准确性。
- 数据效率:即使在小型数据集上,也能达到与卷积神经网络(CNN)相当的准确性。
- 快速收敛:NesT的设计加速了训练过程,减少了所需的计算资源。
- 多平台支持:除了官方的Jax实现,还有Pytorch版本可供选择,便于不同开发环境的集成。
开始使用
要体验NesT的强大功能,您只需设置好Python环境,安装必要的依赖项,然后按照项目提供的脚本进行预训练模型评估或新模型的训练。对于初学者,还有Google Colab notebook供您快速试用。
让我们一起探索NesT的世界,开启视觉理解的新篇章吧!当您在实际项目中应用这些模型时,别忘了引用原始论文:
@inproceedings{zhang2021aggregating,
title={Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and Interpretable Visual Understanding},
author={Zizhao Zhang and Han Zhang and Long Zhao and Ting Chen and and Sercan Ö. Arık and Tomas Pfister},
booktitle={AAAI Conference on Artificial Intelligence (AAAI)},
year={2022}
}
准备好加入这场视觉智能的革新之旅了吗?立即行动,让NesT助力您的项目取得突破性进展!
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie034
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- Sscreenshot-to-code上传一张屏幕截图并将其转换为整洁的代码(HTML/Tailwind/React/Vue)Python03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript088
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX023
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
34
25
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
837
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
34
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.93 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.63 K
1.45 K
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
58
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
149
26
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
20
2
go-iot-platform
Go IoT 平台,这是一个高效、可扩展的物联网解决方案,使用 Go 语言开发。本平台专注于提供稳定、可靠的 MQTT 客户端管理,以及对 MQTT上报数据的全面处理和分析。
Go
9
4