探索未来边界:SOTR —— 使用Transformer进行对象分割
在计算机视觉领域,对象分割是一项至关重要的任务,它涉及识别图像中的每个像素并将其分组到不同的类别中。如今,我们很高兴向您推荐一款创新的开源项目——SOTR(Segmenting Objects with Transformers)。这个项目源自ICCV 2021,并引入了Transformer架构,以在实例分割任务中取得优异性能。
项目介绍
SOTR是一种基于Transformer的对象分割框架,它打破了传统卷积神经网络的限制,充分利用了Transformer在捕获长距离依赖性和全局上下文信息方面的优势。通过结合强大的Transformer和精心设计的网络结构,SOTR能够更精确地定位和分割图像中的各个对象。
项目技术分析
SOTR的核心是其独特的Transformer模块,该模块在特征提取阶段引入,用于增强模型对对象边界的感知能力。与传统的CNN方法相比,Transformer的自注意力机制使得SOTR可以处理复杂的语义关系,即使在小目标或重叠对象上也能保持高精度。
项目提供了多个预训练模型,包括基于ResNet-50和ResNet-101的配置,以及一个带有DCN(Deformable Convolutional Network)的变体,这些模型已在COCO数据集上进行了基准测试。
应用场景
SOTR的技术不仅限于学术研究,也适用于各种实际应用,例如自动驾驶、遥感图像分析、医疗影像识别、智能安全监控等。对于需要精细理解图像内容的场景,SOTR提供的准确对象分割能力将极大地提升系统的智能化水平。
项目特点
- 高效Transformer: 将Transformer应用于对象分割,有效提升了模型的定位和分割精度。
- 多种预训练模型: 提供不同架构的预训练模型,满足不同计算资源和性能需求。
- 易于部署: 基于Detectron2构建,便于安装和快速启动评估或训练流程。
- 社区支持: 借鉴并支持Detectron2和AdelaiDet,拥有活跃的社区和详细的文档,方便问题解答和改进。
要开始探索SOTR的魅力,请访问以下链接并按照指导进行安装和实验:
https://github.com/easton-cau/SOTR
希望SOTR能成为您的下一个研究项目或者生产环境中的得力工具。如果您有任何疑问或建议,欢迎直接联系项目作者ruohguo@foxmail.com。别忘了在引用时注明SOTR的原始论文!
@inproceedings{guo2021sotr,
title={SOTR: Segmenting Objects with Transformers},
author={Guo, Ruohao and Niu, Dantong and Qu, Liao and Li, Zhenbo},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={7157--7166},
year={2021}
}
让我们一起推动计算机视觉领域的边界,发掘Transformer在对象分割上的无限可能!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00